Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Numerical Methods in Scientific Computing Semester: V

Program: BSc (H) Physics Time : 03 hrs.
Course Code: PHYS 3026 Max. Marks: 100

Instructions:

SECTION A	
(5Ox4M=20Marks)	

	(3Qx4W1-20Wiai ks)		
S. No.		Marks	CO
Q1	Using the data given below, prepare a table up to third divided differences. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	CO1
Q2	Using finite differencing, write the expressions for following derivatives: a) $\frac{\partial^2 f}{\partial x^2}$ b) $\frac{\partial^2 f}{\partial x \partial y}$	4	CO1
Q3	What is a positive definite matrix? Check if the given matrix is positive definite or not? $A = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}$	4	CO1
Q4	What are Newton Coates formula? Discuss their limitations.	4	CO1
Q5	Find the eigen values of the following matrix: $ \begin{bmatrix} 3 & 2 & -1 \\ 1 & -2 & 3 \\ 2 & 0 & 4 \end{bmatrix} $	4	CO1
	SECTION B (4Qx10M= 40 Marks)		
Q6	A car traveling along a straight road is clocked at a number of points. The data from the observations are given in the following table, where the time is in seconds, the distance is in feet, and the speed is in feet per second.	10	CO3

		Time	0	3	5	8	13			
		Distance	0	225	383	623	993			
		Speed	75	77	80	74	72			
	Use a Hermite speed when to Construct a nather vales give spline over [0]	= 10 s. atural cubic solution in the substitution in the su	spline $x = 0$	OR to app 0, 0.25	oroxim; , 0.75,	ate $f(x)$ and 1.	$e^{-x} = e^{-x}$ by us 0. Integrate th	sing		
Q7	spline over [0,1], and compare the result to $\int_0^1 e^{-x} dx = 1 - \frac{1}{e}$. A particle of mass m moving through a fluid is subjected to a viscous resistance R , which is a function of the velocity v . The relationship between the resistance R , velocity v , and time t is given by the equation $t = \int_{v(t_0)}^{v(t)} \frac{m}{R(u)} du$ Suppose that $R(u) = -v\sqrt{v}$ for a particular fluid, where R is in newtons and v is in m/s. If $m = 10$ kg and $v(t_0) = 10$ m/s, approximate the time required for the particle to slow to $v = 5$ m/s.							ip quation	10	CO4
Q8	Use RK2 method to numerically solve the following ODE: $\frac{dy}{dt} = \frac{2 - 2ty}{t^2 + 1}, 0 \le t \le 1, \ y(0) = 1, \text{with } h = 0.1$ If the actual solution is given as $y = \frac{2t + 1}{t^2 + 1}$ Prepare a table of the error between the approximated and actual values at different times.							10	CO4	
Q9	A projectile of mass $m = 0.11$ kg shot vertically upward with initial velocity $v(0) = 8$ m/s is slowed due to the force of gravity, $F_g = -mg$, and due to air resistance, $F_r = -kv v $, where $g = 9.8$ m/s ² and $k = 0.002$ kg/m. The differential equation for the velocity v is given by $ \frac{dv}{dt} = -mg - kv v $ (a) Find the velocity after 0.1, 0.2,, 1.0 s (b) To the nearest tenth of a second, determine when the projectile reaches its maximum height and begins falling.					-mg, $z = 0$	10	CO4		
						ON-C :40 Ma				
Q10	(a) Using 3-st dependent Of Take $h = 0.2$	DE: $\frac{dy}{dt} = \frac{y}{t} - \frac{y}{t}$	$\left(\frac{y}{t}\right)^2$,	orth me	ethod, $t \le 2$	solve to $y(1)$	the following to $t = 1$	ime-	20	CO4

	(b) Discretize the Poisson Equation given below using finite difference method: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -3 \qquad 1 < x < 2, 1 < y < 2$ $u(x,1) = 2x^2, u(x,2) = 3(x-2)^2, 1 \le x \le 2$ $u(1,y) = 3y^2, u(2,y) = 2(y-1)^2, 1 \le y \le 2$ Use $h = k = \frac{1}{2}$. Write the discretized equations in terms of $Au = b$, where A is the coefficient matrix, u is the unknown and u is known vector. Discuss the solution strategy. (10 Marks)		
	OR		
	(a) Using 3-step Adam's Moulton method to solve the following ODE: $\frac{dy}{dt} = -5y + 5t^2 + 2t, 0 \le t \le 1, y(0) = 1/3$ Take $h = 0.1$. The actual solution is $y(t) = t^2 + \frac{1}{3}e^{-5t}$ (10 Marks)		
	(b) Discretize the Laplace equation given below using Finite difference method: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \qquad 1 < x < 2, 0 < y < 1$ $u(x,0) = 2 \ln x, u(x,1) = \ln(x^2+1), 1 \le x \le 2$ $u(1,y) = \ln(y^2+1), u(2,y) = \ln(y^2+4), 0 \le y \le 1$ Use $h = k = \frac{1}{3}$. Write the discretized equations in terms of $A\mathbf{u} = \mathbf{b}$, where A is the coefficient matrix, \mathbf{u} is the unknown and \mathbf{b} is known vector. Discuss the solution strategy. (10 Marks)		
Q11	Stress-strain relationships and material properties of a cylinder alternatively subjected to heating and cooling may be studied using the following equation $\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} = \frac{1}{4K} \frac{\partial T}{\partial t}, \frac{1}{2} < r < 1, 0 < T$ where $T = T(r,t)$ is the temperature, r is the radial distance from the center of the cylinder, t is time, and K is a diffusivity coefficient. Find the approximations to $T(r,10)$ for a cylinder with outside radius 1, given the initial and boundary conditions: $T(1,t) = 100 + 40t, T\left(\frac{1}{2},t\right) = t, 0 \le t \le 10$	20 Marks	CO4

$T(r,0) = 200(r-0.5), 0.5 \le r \le 1$	
Use BTCS (backward in time and centered in space) with $K = 0.1$, $k = 0.5$ and $h = \Delta r = 0.1$.	