Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Quantum Mechanics and Applications Semester: V

Program: BSc (H) Physics Time : 03 hrs.
Course Code: PHYS 3019 Max. Marks: 100

Instructions: Answers should be clearly marked by drawing a box around them.

There should be a clear separation between problems on the same page.

Use pictures/diagrams in solutions whenever you think is needed.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	In a region of space, a particle with mass m and with zero energy has a time-independent wave function $\Psi(x) = Axe(^{-x^2/L^2})$, where A and L are constants. Determine the potential energy $U(x)$ of the particle.	4	CO2
Q 2	Use the uncertainty principle to make an order of magnitude estimate for the kinetic energy (in eV) of an electron in a hydrogen atom.	4	CO1
Q 3	Obtain an expression for the Bohr magneton.	4	CO4
Q 4	What boundary conditions do valid wave-functions obey?	4	CO1
Q 5	In a Stern–Gerlach experiment, a collimated beam of neutral atoms is split into 7 equally spaced lines. What is the total angular momentum of the atom?	4	CO3
	SECTION B		•
	(4Qx10M= 40 Marks)		
Q 6	What are the possible z components of the vector \vec{L} that represents the orbital angular momentum of a state with $l = 2$? Compute the magnitude (lengt) of the angular momentum.	10	CO4
Q 7	Show that for a simple harmonic oscillator in the ground state the probability of finding the particle in the classical forbidden region is approximately 16%.	10	CO3
Q 8	Find the total orbital and spin quantum numbers for carbon atom (Z=6).	10	CO4

Q 9	Consider the normal Zeeman effect applied to the 3d to 2p transition. Sketch an energy-level diagram that shows the splitting of the 3d and 2p levels in an external magnetic field. Indicate all possible transitions from each m_l state of the 3d level to each m_l state of the 2p level.		
	Or	10	CO4
	Compute (Zeeman Effect) the change in wavelength of the $2p \rightarrow 1s$ photon when a hydrogen atom is placed in a magnetic field of 2.00 T.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Prove that the operator L_z in the spherical polar coordinate system (r, θ , ϕ) is represented by $L_z = -i\hbar \frac{\partial}{\partial \phi}$		
	ϕ) is represented by $L_z = -i\pi \frac{\partial}{\partial \phi}$	20	CO3
Q 11	State Ehrenfest's theorem. Prove that $\frac{d\langle x \rangle}{dt} = \frac{\langle p_x \rangle}{m}$.		
	Or		
	Consider a simple harmonic oscillator with a Hamiltonian $H = \frac{p^2}{2m} +$	20	CO2
	$\frac{1}{2}\text{m}\omega^2 x^2. \text{ Show that } \left[H, [H, x^2]\right] = (2\hbar\omega)x^2 - \frac{4\hbar^2}{m}H.$		

Standard Physics Constants and their values:

Constants	Standard values
Planck's constant (h)	$6.626 \times 10^{-34} Js$
Speed of light (c)	$3 \times 10^8 \ m/s$
Boltzmann constant (k_B)	$1.38 \times 10^{-23} \ J/K$
Rest mass of an electron (m_0)	$9.11 \times 10^{-31} \ kg \text{ or } 511 \ \text{keV/c}^2$
Charge on electron (e)	$1.6 \times 10^{-19} C$
Rest mass of a proton (m_P)	$1.67 \times 10^{-27} \ kg$