Name:	
Enrolment No:	

UPES

End Semester Examination, December 2023

Course: B.Sc. (H) Mathematics/ Int. B. Sc. M. Sc. Mathematics Program: FINITE ELEMENT METHODS

Time : 03 hrs .
Course Code: MATH 3041
Max. Marks: 100
Instructions: Attempt all questions.

SECTION A
 (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	The population of a certain city is given below for various years at equal intervals except for one year which is to be estimated.	4	CO3
Q 2	Use Picard method to solve the equation $y^{\prime}=x-y$ subject to the condition $y=1$ when $x=0$.	4	CO2
Q 3	Evaluate the interval $I=\int_{0}^{1} \sqrt{1-x^{2}} d x$ taking $h=0.25$ by trapezoidal rule.	4	CO4
Q 4	Determine whether the given equation is elliptic or hyperbolic: $(x+1) u_{x x}-2(x+2) u_{x y}+(x+3) u_{y y}=0$	4	CO5
Q 5	Define shape function in finite element method.	4	CO3

SECTION B
 (4Qx10M= 40 Marks)

Q 6	Find an approximate solution by method of least squares, of the differential equation $\frac{d^{2} u}{d x^{2}}-u=x, \quad 0 \leq x \leq 1$, with boundary condition $u(0)=u(1)=0$. Use only two basis functions.	10	CO 3
Q 7	The following are the measurements t made on a curve recorded by the oscillogran representing a change of current i due to a change in the conditions of an electric curren Using Lagrange's formula, find i at $t=1.6$.	10	CO1

Q 8	Find an approximate solution by Galerkin's method, of the Poisson equation: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-1$ defined in domain D where $D=\{x, y \mid-1 \leq x, y \leq 1\}$ and homogenous Dirichlet boundary conditions are prescribed on the boundary, i.e. $u=$ 0 on $x= \pm 1$ and $y= \pm 1$. Use only one basis function.									10	CO2
Q 9	A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given in the table below. Using Simpson's $1 / 3$ rd rule, find the velocity of the rocket at $t=80$ seconds. OR The speed, v meters per second, of a car, t seconds after it starts, is shown in the following table: using Simpson's $1 / 3^{\text {rd }}$ rule, find the distance travelled by the car in 2 minutes.									10	CO4
$\begin{gathered} \hline \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \\ \hline \end{gathered}$											
Q 10	Solve the elliptic equation $u_{x x}+u_{y y}=0$ for the following square mesh with boundary values as shown in figure given below:									20	CO4

Q 11	Solve the heat conduction problem $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to conditions $u(x, 0)=\sin \pi x$, $0 \leq x \leq 1$, and $u(0, t)=u(1, t)=0$, using Schmidt method and Crank - Nicolson method, taking $h=1 / 3, k=1 / 36$. OR For the boundary value problem $\begin{gathered} u^{\prime \prime}=\left(\frac{3}{2}\right) u^{2}, \quad 0<x<1 \\ u(0)=4, \quad u(1)=1 \end{gathered}$ i) Verify that the variational formulation of the problem is $J[u]=\int_{0}^{1}\left[\left(u^{\prime}\right)^{2}+u^{3}\right] d x$. ii) Use the finite element method, with $h=1 / 3$, to derive the elemental equations.	20	$\mathrm{CO5}$

