Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: B.Sc. (H) Mathematics/ Int. B. Sc. M. Sc. Mathematics Semester: V

Program: FINITE ELEMENT METHODS

Course Code: MATH 3041

Time : 03 hrs.

Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	The population of a certain city is given below for various years at equal interval except for one year which is to be estimated. Year: 1951 1961 1971 1981 1991	ls 4	CO3
	Population: 45 43 _ 52 55. (in thousands)		
Q 2	Use Picard method to solve the equation $y' = x - y$ subject to the condition $y = 1$ where $x = 0$.	en 4	CO2
Q 3	Evaluate the interval $I = \int_0^1 \sqrt{1 - x^2} dx$ taking $h = 0.25$ by trapezoidal rule.	4	CO4
Q 4	Determine whether the given equation is elliptic or hyperbolic: $(x+1)u_{xx} - 2(x+2)u_{xy} + (x+3)u_{yy} = 0.$	4	CO5
Q 5	Define shape function in finite element method.	4	CO3
	SECTION B	1	
	(4Qx10M= 40 Marks)		
Q 6	Find an approximate solution by method of least squares, of the differential equation $\frac{d^2u}{dx^2} - u = x$, $0 \le x \le 1$, with boundary condition $u(0) = u(1) = 0$. Use on two basis functions.		CO3
Q 7	The following are the measurements t made on a curve recorded by the oscillog representing a change of current i due to a change in the conditions of an electric current.	_	
	t: 1.2 2.0 2.5 3.0	10	CO1
	i: 1.36 0.58 0.34 0.20		
	Using Lagrange's formula, find i at $t = 1.6$.		

Q 8	Find an approxima $\partial^2 u = \partial^2 u$										
	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -1 \text{ defined in domain } D \text{ where } D = \{x, y -1 \le x, y \le 1\} \text{ and homogenous Dirichlet boundary conditions are prescribed on the boundary, i.e. } u = 0 \text{ on } x = \pm 1 \text{ and } y = \pm 1. \text{ Use only one basis function.}$								1) and $u = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	10	CO2
Q 9	A rocket is launched seconds and is give	ed from the en in the table	ground. I le below.	ts accele	eration is						
	of the rocket at $t = t$ (sec) : 0	0 20	30	40	50	60		70	80		
	$f\left(\frac{cm}{sec^2}\right):30 31$.63 33.34	35.47	37.75	40.33	43.2	5 40	6.69	50.67.		
	OR									10	CO4
	The speed, v meters per second, of a car, t seconds after it starts, is shown in the following table:								n in the		
	t:0 12 24	4 36	48	60	72	84	96	108	120		
	v:0 3.60 10	.08 18.90	21.60	18.54	10.26	5.40	4.50	5.40	9.00		
	using Simpson's 1	/3 rd rule, fine	d the dist	ance trav	velled by	the car	in 2 mi	inutes.			
					CTION-						<u> </u>
Q 10	Solve the elliptic	equation a	$\frac{u_{xx} + u_{y}}{u_{y}}$	` -	M=40 M for the fo		g squa	re mes	sh with		
	Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown in figure given below:										
	0 500 1000 500 0										
				C				l			
			и,	"	r.	u,					
	1000			- 	-	1.,		1000			
										20	CO4
	2000	A	u ₄	"	3	u _e	В	2000			
	1000		u _z	u	,	u _o		1000			
	1000										
				D							
	0		500	1000	0	500		0			

Q 11	Solve the heat conduction problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to conditions $u(x,0) = \sin \pi x$, $0 \le x \le 1$, and $u(0,t) = u(1,t) = 0$, using Schmidt method and Crank – Nicolson method, taking $h = 1/3$, $k = 1/36$.		
	OR For the boundary value problem	20	CO5
	$u'' = \left(\frac{3}{2}\right) u^2, \qquad 0 < x < 1,$ $u(0) = 4, u(1) = 1.$ i) Verify that the variational formulation of the problem is $J[u] = \int_0^1 [(u')^2 + u^3] dx$. ii) Use the finite element method, with $h = 1/3$, to derive the elemental equations.		