Name:	
Enrolment No:	

UPES

End Semester Examination, December 2023
Course: B.Sc. (H) Mathematics/ Int. B. Sc. M. Sc. Mathematics Program: BOOLEAN ALGEBRA \& AUTOMATA THEORY Course Code: MATH 3040

Semester: V
Time : 03 hrs .
Max. Marks: 100

Instructions: Attempt all questions.

SECTION A
 (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Let $\mathbf{N}=\{1,2,3, \ldots\}$ be ordered by divisibility. State whether each of the following subsets of \mathbf{N} are linearly (totally) ordered. i) $\{24,2,6\}$ ii) $\{3,15,5\}$.	4	CO 2
Q 2	Define complemented lattice with suitable example.	4	CO1
Q 3	Define regular language with suitable example.	4	CO3
Q 4	Find $<m>$ if: i) $m=(4,0,3) \quad$ ii) $m=(3,-2,5)$.	4	CO4
Q 5	Find the prime implicants and a minimal sum-of-products form for $E=x y+x y^{\prime}$.	4	CO4
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Find the sum of adjacent products P_{1} and P_{2} where: i) $P_{1}=x y z^{\prime}$ and $P_{2}=x y^{\prime} z^{\prime}$. ii) $P_{1}=x^{\prime} y z t$ and $P_{2}=x^{\prime} y z^{\prime} t$. iii) $P_{1}=x y z^{\prime}$ and $P_{2}=x y z t$.	10	CO 2
Q 7	Consider the following languages over $A=\{a, b\}$: i) $L_{1}=\left\{a^{m} b^{n} \mid m>0, n>0\right\}$; ii) $L_{2}=\left\{b^{m} a b^{n} \mid m>0, n>0\right\}$. Find a regular expression r over A such that $L_{i}=L(r)$ for $i=1,2$.	10	CO 3
Q 8	Determine whether the automaton M in figure given below accepts the words: $w_{1}=$ $a b a b b a ; \quad w_{2}=b a a b$.	10	CO4

Q 11	Prerequisites in college is a familiar partial ordering of available classes. We write $\mathrm{A}<\mathrm{B}$ if course A is a prerequisite for course B . Let C be the ordered set consisting of the mathematics courses and their prerequisites appearing in figure given below. (a) Draw the Hasse diagram for the partial ordering C of these classes. (b) Find all minimal and maximal elements of C. (c) Does C have a first element or a last element? OR Consider the bounded lattice L in figure given below: (a) Find the complements, if they exist, of e and f. (b) Is L distributive? (c) Describe the isomorphisms of L with itself.	20	CO 2

