Name: Enrolment No:					TV			
\left.UPES End Semester Examination, December 2023 $\right)$								
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$								
S. No. Q 1 Define (a) Solution (b) Feasible solution (c) Basic solution and (d) Unbounded solution of a LPP.							Marks	CO
							4	CO1
Q 2	Write the dual of the$\begin{aligned} & \text { Min } Z=2 y+5 z \text { subject to } \\ & \begin{array}{c} x+y \geq 2 \\ 2 x+y+6 z \leq 6 \\ x-y+3 z=4 \end{array} \\ & \text { and } x, y, z \geq 0 \end{aligned}$						4	CO1
Q 3	Discuss the mathematical formulation of the transportation problem.						4	CO2
Q 4	Using Least Cost Method, find the initial basic feasible solution to the following transportation problem.						4	
	Factory	D_{1}	D_{2}	D_{3}	D_{4}	Supply		
	S_{1}	19	30	50	10	7		
	S_{2}	70	30	40	60	9		CO2
	S_{3}	40	8	70	20	18		
	Demand	5	8	7	14			

Q 5	The efficiency E of a small manufacturing concern depends on the workers W and is given by $10 E=-\left(\frac{w^{3}}{40}\right)+30 W-392$. Find the strength of the workers that would give the maximum efficiency.	4	CO3
	$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$		
Q 6	Solve the following LPP using Dual Simplex method. $\operatorname{Min} Z=3 x+y$ subject to $\begin{gathered} x+y \geq 1 \\ 2 x+3 y \geq 2 \end{gathered}$ and $x, y \geq 0$.	10	CO1
Q 7	Solve the following transportation problem by VAM method and find the minimum cost.	10	$\mathrm{CO2}$
Q 8	Discuss the Kuhn-Tucker necessary conditions and obtain the KuhnTucker necessary conditions for the following problem. $\begin{aligned} & \operatorname{Max} Z=10 x-x^{2}+10 y-y^{2} \text { subject to } \\ & \\ & \qquad \begin{array}{l} x+y \leq 9 \\ \\ \text { and } x, y \geq 0 . \end{array} \end{aligned}$	10	CO 3
Q 9	Find the second order Taylor's series expansion of the function $f(x, y)=12 x y+5 y^{2}$ about the point $[1,0]^{T}$. (OR) Consider the function $f(x, y)=3 x^{2}+y^{2}-10$. Determine the maximum or minimum point (if any) of the function.	10	$\mathrm{CO3}$

$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \end{gathered}$								
Q 10	Use penalty (Big-M) method to solve the following LPP. Minimize $Z=5 x+3 y$ subject to $\begin{gathered} 2 x+4 y \leq 12 \\ 2 x+2 y=10 \\ 5 x+2 y>=10 \end{gathered}$ and $x, y \geq 0$ (OR) Solve the following Travelling salesman problem.						20	$\mathrm{CO} 2$
	From/To	A	B	C	D	E		
	A	-	3	6	2	3		
	B	3	-	5	2	3		
	C	6	5	-	6	4		
	D	2	2	6	-	6		
	E	3	3	4	6	-		
Q 11	Use the method of Lagrangian multipliers to solve the following NLP problem. Does this solution maximize or minimize the objective function? $\begin{gathered} \text { Optimize } Z=4 x^{2}+2 y^{2}+z^{2}-4 x y \text { subject to } \\ x+y+z=15 \\ 2 x-y+2 z=20 \end{gathered}$ and $x, y, z \geq 0$						20	CO 3

