Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2023

Course: Advanced Algebra Program: B. Sc. (Hons.) Mathematics + Int. B.Sc.-M.Sc. Mathematics Course Code: MATH 3031 Instructions: All questions are compulsory. Semester: V Time: 03 hrs. Max. Marks: 100

S. No.		Marks	CO
Q1	Find the cardinality of set of all such permutations in symmetric group S_6 each having order equal to 6.	4	CO1
Q2	Explain why the group $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_2$ is not isomorphic to the group \mathbb{Z}_{18} ; where the symbol \oplus denotes the external direct product.	4	C01
Q3	Determine the quotient group $\frac{S_3}{\langle (1 \ 2) \rangle}$; where S_3 is the group of permutations on the set {1,2,3} and $\langle \beta \rangle$ denotes the cyclic subgroup generated by β .	4	CO1
Q4	List all primes p such that the system of equations: 5x + 3y = 4 and $3x + 6y = 1have a unique solution in the field \mathbb{Z}_p.$	4	CO2
Q5	Consider a set <i>G</i> consisting of all $n \times n$ real square diagonalizable matrices over field \mathbb{R} . Give reasons to justify whether it forms a ring or not.	4	CO2
	SECTION B		
Q 6	$(4Qx10M=40 \text{ Marks})$ Determine the number of elements of order 5 in $\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_2$ where $G_1 \oplus$	10	
	$G_2 \oplus G_3$ denotes the external direct product of three groups G_1, G_2 and G_3 .		CO1
Q7	Find all distinct subgroups each having order 3 of the group $G = \mathbb{Z}_9 \bigoplus \mathbb{Z}_3$.	10	CO1
Q8	Consider the ring $M_n(\mathbb{R})$ of all square real matrices of order <i>n</i> and its subset defined as:		
	$S = \{A \in M_n(\mathbb{R}) \mid A^T = A\}$	10	CO2
	Prove or disprove that S is a subring of $M_n(\mathbb{R})$.		

Q9	Prove that 3 is not prime in the ring $\mathbb{Z}[\sqrt{-41}] = \{a + ib \mid a, b \in \mathbb{Z}\}.$ OR Prove that 3 is irreducible in the ring $\mathbb{Z}[\sqrt{-41}] = \{a + ib \mid a, b \in \mathbb{Z}\}.$	10	CO3
	SECTION-C (2Qx20M=40 Marks)		
Q10	 Suppose n ∈ Z_{>0}. Consider ring R_(n) defined as R_(n) = {a + b√n a, b ∈ Z} and α ∈ R_(n). Prove or disprove: (a) α = 3 is irreducible in R₍₂₎. (b) α = 2 is not prime in R₍₅₎. 	20	CO3
Q11	Consider the set $S = \{p(x) \in \mathbb{Z}[x] \mid p(-1) = p(1) = 0\}$. where $\mathbb{Z}[x]$ is the ring of polynomials with the usual operations of pointwise addition and pointwise multiplication. Prove that <i>S</i> is an ideal of $\mathbb{Z}[x]$. Is <i>S</i> a prime ideal? Is <i>S</i> maximal in $\mathbb{Z}[x]$? Give reasons for your choice. OR Prove that $\frac{R}{J}$ is a PID whenever R is a PID and <i>J</i> is an ideal such that $ab \in J \implies a \in J \text{ or } b \in J$.	20	CO2