Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Radiative Processes in Astrophysics Program: MSc Physics Course Code: PHYS8088P Semester : 3 Time : 03 hrs. Max. Marks : 100

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	What do you understand by radiation pressure? Deduce the relationship between radiation pressure and energy density of a field.	4	CO2
Q 2	Explain the concept of retarded potentials with the help of mathematical expressions without derivation.	4	CO1
Q 3	Briefly describe the following - 1. Thomson scattering 2. Compton scattering	4	CO4
Q 4	Describe the two parts of Blackbody spectrum with the help of plot and equations.	4	CO2
Q 5	Write a note on Stoke's parameters for monochromatic waves.	4	CO4
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Elaborate on Wave equation taking Maxwell's equation in vacuum as your starting point.	10	CO1
Q 7	Explain hyperfine transitions taking Hydrogen 21-cm line as an example.	10	CO4
Q 8	Give a detailed account of radiation taking place when the particle is accelerated in the presence of a magnetic field relativistically. Sketch the power spectrum for the process along with relevant equations. OR Enumerate various sources of synchrotron radiation in astrophysics.	10	CO3
Q 9	Describe inverse Compton scattering.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		I
Q 10	Derive the expressions for Thomson cross-section for an electron. Given the mass and charge of electron, $m=9.10938356 \times 10^{-31}$ kg and $e=1.602 \times 10^{-19}$ coulombs, calculate the value of Thomson cross-section for an electron.	20	CO4

Q 11	Discuss Bremsstrahlung radiation under the following headings -			
	1. Nature of radiation	5+5+10		
	2. Power radiated.			
	3. Bremsstrahlung in ICM and HII regions.		CO3	
	OR			
	State the Poynting's theorem and derive the expression for Poynting	20		
	vector with appropriate symbols and their meanings.			