Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Organic Chemistry II Program: B.Sc. (H) Chemistry Course Code: CHEM 2021

Semester: III Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Explain Hoffmann bromamide reaction with mechanism.	4	CO3
Q 2	 Give Reasons: i) The boiling point of carboxylic acids is higher than the alcohols of similar molecular weight. ii) Acetic acid is stronger than propionic acid. 	4	CO1
Q 3	Explain the method to distinguish among α , β and γ -hydroxy acids with the help of chemical reactions.	4	CO2
Q 4	Use any suitable method to obtain the following from propanoic acid: i) Ethane ii) Propanoic anhydride	4	CO2
Q 5	Explain the action of heat on the following:i)Succinic acidii)Malonic acid	4	CO2
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Complete the following reactions and discuss the mechanism: i) $HCHO \xrightarrow{KOH}$ ii) $C_6H_5CHO + (CH_3CO)_2O \xrightarrow{CH_3COONa}$	10	CO3
Q 7	Write down the IUPAC names of the following compounds: $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$ i) $H CH_3$	10	CO1

Q 10	and giv C ₃ H ₈ O gives ' oxidati b) An org which may b	SECTION-C (2Qx20M=40 Marks) ganic compound C_3H_6O (A) is oxidized by Fehling's solution ves silver mirror with Tollen's reagent. 'A' gives on reduction O (B). On reaction with HBr followed by heating with Mg, 'B' C', which reacts with ethylene oxide to give $C_5H_{12}O$ (D). On ion, 'D' gives $C_5H_{10}O_2$ (E). Identify the compounds 'A' to 'E'. ganic compound $C_4H_6O_4$ (A) on heating gives $C_4H_4O_3$ (B), in turn reacts with NH ₃ to give $C_4H_5O_2N$ (C). Both 'B' and 'C' be hydrolyzed to 'A'. With Cl ₂ , 'A' gives a monochloro bund 'D', which reacts with aqueous KOH to give $C_4H_4O_5K_2$	10+10	CO2
Q 9	i) ii) iii) iv)	the reactions: $CH_{2} = CH - CHO \xrightarrow{HBr} \\ CH_{3}COCl + C_{6}H_{6} \xrightarrow{Anhy.AlCl_{3}} \\ CH_{3}CONH_{2} + HNO_{2} \rightarrow \\ CH_{3}COCH_{3} + CHCl_{3} + KOH \rightarrow \\ C_{6}H_{5}OH + CO_{2} + NaOH \xrightarrow{120-140^{o}C} $	10	CO2
Q 8	support yo i) ii) iii)	he following as instructed. Also, provide suitable reason to bur answer. CH ₃ COCl, (CH ₃ CO) ₂ O, CH ₃ COOCH ₃ (increasing order of reactivity) CH ₂ =CH-Cl, CH ₃ CH ₂ Cl, C ₆ H ₅ CH ₂ Cl (increasing order of reactivity for nucleophilic substitution) C ₆ H ₅ OH, C ₆ H ₅ CHO, C ₆ H ₅ COOH (increasing order of reactivity for electrophilic substitution)	4+4+2	CO1
	ii) iii) iv) v)	$H_{3}C \xrightarrow{C} (CH_{2})_{4} - CH_{3}$ $H_{0} \xrightarrow{C} (H_{3}) \xrightarrow{O} (CH_{3}) \xrightarrow$		

	Conversions:		
	i) Methane to toluene		
	ii) Ethane to acetaldehyde	20	
	iii) Methyl chloride to acetic acid		
	iv) Ethylene to 2-butanone		
	v) Acetic acid to ethylene		
	a) Discuss the reaction of acetaldehyde with C ₆ H ₅ NHNH ₂ . Also,	5+ 15+ 5	
Q 11	discuss the mechanism.		
	b) What happens when:		CO2
	i) Acetaldehyde reacts with NH ₃ .		
	ii) Acetone reacts with Cl_2 .		
	iii) Formaldehyde reacts with KOH.		
	iv) Ethylene glycol reacts with conc. H_2SO_4 .		
	v) Benzene diazonium chloride reacts with KI.		
	c) Write down the structures of:		
	i) Maleic acid		
	ii) Lactic acid		
	Mention their IUPAC names as well.		