Name:

**Enrolment No:** 



## UPES

End Semester Examination, December 2023

**Course:** Basics of Ion Accelerator and Beam Optics. Program: MSc. Physics **Course Code:** PHYS 8074P

Semester: III Time : 03 hrs. Max. Marks: 100

## **Instructions:**

- All questions are compulsory.
   There are internal choices in Q 9 and Q 11.
- 3. Use of calculators is allowed.

## **SECTION A** (5Qx4M=20Marks)

|        | (SQX4WI-ZOWIAIRS)                                                                                                                                                                                                                                                               |       |     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| S. No. |                                                                                                                                                                                                                                                                                 | Marks | СО  |
| Q 1    | Explain the concept of matrix methods in designing and analyzing beam transport in particle accelerators.                                                                                                                                                                       | 4     | CO2 |
| Q 2    | What are aberrations in focusing devices, and how do they affect beam quality? Provide examples.                                                                                                                                                                                | 4     | CO2 |
| Q 3    | Give the principle for operation of MC-SNICS Ion source.                                                                                                                                                                                                                        | 4     | CO1 |
| Q 4    | A charged particle with a charge of +e and a mass of 9.11 x $10^{-31}$ kg is moving in a uniform magnetic field of 0.5 T. Calculate the radius of the circular path that the particle follows when its velocity is 2 x $10^6$ m/s.                                              | 4     | CO1 |
| Q 5    | Calculate the ion fluence if a sample of Si of area 1 cm x 1 cm is irradiated<br>by 100 keV Kr <sup>+</sup> ions for 30 mins. Consider the beam current to be equal<br>to $1\mu A$ .                                                                                            | 4     | CO3 |
|        | SECTION B                                                                                                                                                                                                                                                                       |       |     |
|        | (4Qx10M= 40 Marks)                                                                                                                                                                                                                                                              |       |     |
| Q 6    | Describe the operation of radio frequency (RF) ion sources. How do<br>they differ from other ion source types, and what are their advantages?                                                                                                                                   | 10    | CO1 |
| Q 7    | Explore the use of Liouville's theorem in phase space dynamics and its applications in particle accelerators and beam transport.                                                                                                                                                | 10    | CO2 |
| Q 8    | Explain the principles of operation of a Cyclotron. Calculate the frequency at which a proton orbits in a cyclotron with a magnetic field strength of 1.2 T.                                                                                                                    | 10    | CO1 |
| Q 9    | Discuss the role of quadrupole magnets in beam focusing, including the strengths and limitations of their operation.<br>OR<br>Sector and rectangular magnets have opposite focusing properties.<br>Determine the geometry of a wedge magnet with equal focusing in both planes. | 10    | CO2 |

|      | SECTION-C<br>(2Qx20M=40 Marks)                                                                                                                                                                                                                                                                                                                    |    |     |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|--|
| Q 10 | <ul> <li>Write short notes on the following (4 marks each):</li> <li>(a) Nuclear energy loss</li> <li>(b) Electronic energy loss</li> <li>(c) Thermal spike model</li> <li>(d) Coulomb explosion model</li> <li>(e) Sputtering</li> </ul>                                                                                                         | 20 | CO3 |  |  |
| Q 11 | Explore the advancements in materials synthesis and characterization<br>methods based on ion beams, emphasizing their importance in various<br>research fields.<br>OR<br>Design a comprehensive beam transport system for a particle accelerator,<br>considering the use of focusing devices, beamline components, and<br>minimizing aberrations. | 20 | CO3 |  |  |