

OR						
Q 6	There are 100 students in a university college and in the whole university, inclusive of this college, the number of students is 2000. In a random sample study 20 were found smokers in the college and the proportion of smokers in the university is 0.05 . Is there a significant difference between the proportion of smokers in the college and university? Test at 5 per cent level.				10	CO2
Q 7	Write a python program to calculate for multiple-linear regression to predict y using x_{1} and x_{2} and validate the model. Assume any arbitrary data for the code.				10	CO1
Q 8	Demonstrate the applicability of one-way ANOVA classification with the help of an example.				10	CO3
Q9	What are the different methods of estimating a missing data value? Explain with the help of an example.				10	CO1
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 M=40 \text { Marks }) \end{gathered}$						
Q 10	The stage-discharge data of a river are given below. Establish the stage-discharge relationship to predict the discharge for a given stage. Assume the value of stage for zero discharge as 35.00 m . (2) What is the correlation coefficient of the relationship established above? (3) Estimate the discharge corresponding to stage values of 42.50 m and 48.50 m respectively. The relationship between the discharge (Q) and gauge reading (G) is non-linear and given as: $\mathbf{Q}=\mathbf{C}_{\mathrm{r} \cdot} \cdot(\mathbf{G}-\mathbf{a})^{\mathbf{b}}$ $a=$ constant which represents the gauge reading corresponding to zero discharge, C_{r} and b are rating curve constants.				20	CO4
OR						
Q 10	a) In a random selection of 64 of the 2400 intersections in a small city, the mean number of scooter accidents per year was 3.2 and the sample standard deviation was 0.8 . i. Make an estimate of the standard deviation of the population from the sample standard deviation.				15+5	CO4

	ii. Work out the standard error of mean for this finite population. iii. If the desired confidence level is .90 , what will be the upper and lower limits of the confidence interval for the mean number of accidents per intersection per year? b) Explain the properties of Poisson distribution.					
Q 11	For the data given below, plot the series and construct ARMA model to predict the future values.				20	CO 4
	Month	Passengers	Month	Passengers		
	Jan-49	112	Jan-50	115		
	Feb-49	118	Feb-50	126		
	Mar-49	132	Mar-50	141		
	Apr-49	129	Apr-50	135		
	May-49	121	May-50	125		
	Jun-49	135	Jun-50	149		
	Jul-49	148	Jul-50	170		
	Aug-49	148	Aug-50	170		
	Sep-49	136	Sep-50	158		
	Oct-49	119	Oct-50	133		
	Nov-49	104	Nov-50	114		
	Dec-49	118	Dec-50	140		

