Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Statistical Modelling and Simulation
Program: B. Tech Sustainability Engineering
Course Code: SUEN 2004
Semester: III
Time: 03 hrs.
Max. Marks: 100

	SECTION A (5Qx4M=20Marks)			
S. No.		Marks	СО	
Q 1	Draw a frequency polygon following data:			
	Marks <20 <40 <60 <80 <100	4	CO1	
	No of Students 10 40 80 100 110			
Q 2	The following are the monthly evaporation data (JanDec.) at a Dam in a certain year in cm: 16.7, 14.3, 17.8, 25.0, 28.6, 21.4, 16.7, 16.7, 16.7, 21.4, 16.7, 16.7			
Q 3	Calculate the kurtosis for the data and interpret its physical significance. The foreman of ABC mining company has estimated the average quantity of iron ore extracted.	4 d	CO1	
Q 3	to be 36.8 tons per shift and the sample standard deviation to be 2.8 tons per shift, based upon a random selection of 4 shifts. Construct a 90 per cent confidence interval around this estimate.			
Q 4	Define the following terms: a) Seasonality b) Stochasticity c) Periodicity d) Cyclicity	4	CO1	
Q 5	Differentiate between the following: a) Precision and accuracy b) Causation and correlation	4	CO1	
	SECTION B	•	•	
Q 6	(4Qx10M= 40 Marks) A sample of 10 is drawn randomly from a certain population. The sum of the square	d		
	deviations from the mean of the given sample is 50. Test the hypothesis that the variance of the population is 5 at 5 per cent level of significance.			

			OR				
Q 6	There are 100 students in a university college and in the whole university, inclusive of this college, the number of students is 2000. In a random sample study 20 were found smokers in the college and the proportion of smokers in the university is 0.05. Is there a significant difference between the proportion of smokers in the college and university? Test at 5 per cent level.						
Q 7	Write a python program to calculate for multiple-linear regression to predict y using x_1 and x_2 and validate the model. Assume any arbitrary data for the code.						
Q 8	Demonstrate the applicability of one-way ANOVA classification with the help of an example.						
Q 9	What are the different methods of estimating a missing data value? Explain with the help of an example.						
			ECTION-C 20M=40 Marks)		•		
	Stage (m) 35.91 36.90 37.92 44.40 45.40 46.43 The relationship between t	Discharge (m³/s) 89 230 360 3800 4560 5305 he discharge (Q) ar Q = C _r . (G -	Stage (m) 39.07 41.00 43.53 48.02 49.05 49.55 49.68 and gauge reading ((a))	Discharge (m³/s) 469 798 2800 5900 6800 6900 6950 G) is non-linear and given as:	20	CO4	
	rating curve constants.		OR				
Q 10	of scooter accident	s per year was 3.2 a timate of the stand	0 intersections in a	a small city, the mean number ndard deviation was 0.8. e population from the sample	15+5	CO4	

	 ii. Work out the standard error of mean for this finite population. iii. If the desired confidence level is .90, what will be the upper and lower limits of the confidence interval for the mean number of accidents per intersection per year? b) Explain the properties of Poisson distribution. 					
Q 11	For the data given below, plot the series and construct ARMA model to predict the future values.					
	Month	Passengers	Month	Passengers		
	Jan-49	112	Jan-50	115	20	
	Feb-49	118	Feb-50	126		
	Mar-49	132	Mar-50	141		
	Apr-49	129	Apr-50	135		004
	May-49	121	May-50	125		CO4
	Jun-49	135	Jun-50	149		
	Jul-49	148	Jul-50	170		
	Aug-49	148	Aug-50	170		
	Sep-49	136	Sep-50	158		
	Oct-49	119	Oct-50	133		

Dec-50

118

140

Dec-49