Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course:Fluid MechanicsProgram:B.Tech ME, ADE, MechatronicsCourse Code:MECH2023

Semester: III Time: 03 hrs Max. Marks: 100

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Discuss the effect of temperature on viscosity of liquids and gases in general.	4	C01
Q 2	A hissing sound is heard when a garden hose (through which water is flowing) is pinched. Analyze and explain the phenomenon.	4	CO2
Q 3	Differentiate between streamline, streakline and pathline concisely.	4	CO2
Q 4	Golf balls have dimples. Discuss the reason.	4	CO3
Q 5	Discuss the development of boundary layer over a flat plate and its features with a suitable sketch. How does local shear vary over the plate?	4	CO3
	SECTION B (4Qx10M= 40 Marks)		•
Q 6	A two dimensional, incompressible flow is given by $u = -y$, $v = x$. Determine the equation for streamlines, draw them, and also get the equation of streamline that passes through 'x=10, y=0' point.	10	CO2
Q 7	A vertical plane area having the shape shown in Fig. below is immersed in an oil bath (specific gravity = 0.89). Determine the magnitude of the resultant force acting on one side of the area as a result of the oil. Also determine the center of pressure. $ \begin{array}{c} $	10	CO1

0.0	$A^{1}_{1}(x) = 1.22 I_{1} x I_{1} x^{3} = 1.70 \times 10^{-5} N_{2} I_{1} x^{2} (1 - 1 - 2)$		
Q 8	Air ($\rho = 1.23 \ kg/m^3$, $\mu = 1.79 x 10^{-5} Ns/m^2$) flows through a 3 mm		
1	diameter tube with an average speed of 60 m/s. (a) Assuming that		
	precautions are taken to eliminate any disturbances and flow remains	10	CO4
	laminar, determine the pressure drop in 0.1 m length of tube (b) Repeat		
	the calculation if flow is turbulent and roughness $\epsilon = 0.0015 \ mm$.		
Q Q	Moody's chart is given at the end.		
Q 9	At a sudden contraction in a pipe the diameter changes from D_1 to D_2 .		
	The pressure drop, Δp , which develops across the contraction is a		
	function of D_1 and D_2 , as well as the velocity, V, in the larger pipe, and		
	the fluid density, ρ , and viscosity, μ . Use D ₁ , V, and μ as repeating		
	variables to determine a suitable set of dimensionless parameters. Why		
	would it be incorrect to include the velocity in the smaller pipe as an		
	additional variable?		
	OR		
	It is desired to determine the drag on a very small body when placed in	10	CO3
	water flowing at 10 m/s. Since, the body is small, experiment is done		
	using air flow over a larger model of scale 50. Calculate the flow		
	velocity of air for the model. The measured drag on model is 1 N.		
	Calculate the drag on the small body assuming similarity.		
	Kinematic viscosity of water, $v_w = 1.12 \times 10^{-6} m^2/s$		
	Kinematic viscosity of air, $v_a = 1.46 x 10^{-5} m^2/s$		
	Density of air, $\rho_a = 1.2 \ kg/m^3$		
	SECTION-C		
	(2Qx20M=40 Marks)		_
Q 10	(a) (14 Marks) A converging elbow turns water through an angle of		
	135° in a vertical plane. The flow cross section diameter is 400 mm at	20	CO4
	the elbow inlet, section (1), and 200 mm at the elbow outlet, section (2).		
	The elbow flow passage volume is 0.2 m^3 between sections (1) and (2).		
	The water volume flowrate is 0.4 m ³ /s and the elbow inlet and outlet		
	pressures are 150 kPa (gauge) and 90 kPa (gauge). The elbow mass is		
	12 kg. Calculate the horizontal (x direction) and vertical (z direction)		
	anchoring forces required to hold the elbow in place.		

	density of manometer fluid is 500 kg/m^3 . Inlet and outlet pipe areas are 0.05 m^2 and 0.07 m^2 , respectively.		
	Density = 500 kg/m ³ H H H H H H H H		
Q 11	Consider steady, laminar flow of an incompressible fluid between two horizontal, fixed parallel plates. Derive the velocity distribution, volumetric flow rate and mean velocity as a function of pressure gradient.	20	CO2

