

Q 7	Apply Newton's forward interpolation to estimate the velocity at $x=0.4 \mathrm{~cm}$ for a fluid near a flat surface, given the velocity distribution provided below where x represents the distance from the surface (cm) and v denotes the velocity $(\mathrm{cm} / \mathrm{s})$.						
	Distance (x) 0.1	0.3	0.5	0.7	0.9		
	Velocity (v) 0.72	1.81	2.73	3.47	3.98		
Q 8	The following system of equations is designed to determine concentrations (the c 's in $\mathrm{g} / \mathrm{m}^{3}$) in a series of coupled reactors as a function of the amount of mass input to each reactor (the right-hand sides in $g / d a y$), $\begin{gathered} 15 c_{1}-3 c_{2}-c_{3}=3300 \\ -3 c_{1}+18 c_{2}-6 c_{3}=1200 \\ -4 c_{1}-c_{2}+12 c_{3}=2400 \end{gathered}$ Execute two iterations of the Gauss-Seidel method with an initial approximation set as $\left[c_{1}, c_{2}, c_{3}\right]^{T}=[0,0,0]$.					10	CO3
Q 9	A ball at 1200 K is allowed to cool down in air at ambient temperature of 300 K . Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by $\frac{d \theta}{d t}=-2.2067 \times 10^{-12}\left(\theta^{4}-81 \times 10^{8}\right), \quad \theta(0)=1200 K$ where θ is in K and and t in seconds. Determine the temperature at $t=240 \mathrm{~s}$ using the fourth order Runge-Kutta (RK) method, assuming a step size of $h=240 \mathrm{~s}$. OR Solve the boundary value problem $\left(1+x^{2}\right) y^{\prime \prime}+4 x y^{\prime}+2 y=2, y(0)=0, y(1)=$ $1 / 2$ by finite difference method. Use central difference approximations with $h=1 / 3$.					10	CO3
	$\begin{gathered} \text { SECTION C } \\ \text { (2QX20M=40 Marks) } \end{gathered}$						
Q 10	The ideal gas law is given by $p v=R T$ where p is the pressure, v is the specific volume, R is the universal gas constant, and T is the absolute temperature. This equation is only accurate for a limited range of pressure and temperature. Vander Waals came up with an equation that was accurate for larger range of pressure and temperature given by					20	CO1

	$\left(p+\frac{a}{v^{2}}\right)(v-b)=R T$ where a and b are empirical constants dependent on a particular gas. Given the value of $R=0.08, a=3.592, b=0.04267, p=10$ and $T=300$ (assume all units are consistent), one is going to find the specific volume, v, for the above values. Without finding the solution from Vander Waals equation, what would be a good initial guess for v ? Utilize Newton-Raphson method and conduct two iterations. Show all steps in calculating the estimated root, absolute relative approximate error for each iteration.		
Q 11	Solve the following Laplace equation $u_{x x}+u_{y y}=0$ numerically, using five-point formula and Liebmann iteration, for the following mesh with uniform spacing and with boundary conditions as shown below in the figure. Obtain the results correct to two decimal places. OR Solve by Crank-Nicolson method the following heat conduction equation $u_{t}=u_{x x}$ subject to $u(x, 0)=0, u(0, t)=0$ and $u(1, t)=t$, for two time steps.	20	$\mathrm{CO4}$

