	LIDEC				
UPES					
C	End Semester Examination, December 2023				
5		Semester: III Fime: 03 hrs			
Course	Code: MATH2053	Max. Ma	rks : 100		
Instruct	ions: You must answer all of the questions. Use a scientific calculator as required for yo	ur calcula	tions.		
SECTION A (5QX4M=20 Marks)					
S. No.		Marks	СО		
Q 1	Is this system of equations well-conditioned?				
	$\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$	4	CO3		
Q 2	Determine the LU decomposition for the given matrix.				
	$\begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}$	4	CO3		
	Employ Cholesky's method to decompose the coefficient matrix.				
Q 3	Present the general structure of a first-order initial value problem. Outline the standard representation of Euler's method for solving initial value problems of the first order.	4	CO3		
Q 4	Write the second order difference approximations for (i) $y'(x_i)$ and (ii) $y''(x_i)$ based on central differences.	4	CO4		
Q 5	Write out the diagonal five-point formula for solving (i) Laplace's equation $u_{xx} + u_{yy} = 0$ and (ii) Poisson equation $u_{xx} + u_{yy} = G(x, y)$ with uniform mesh spacing <i>h</i> .		CO4		
	SECTION B (4QX10M=40 Marks)				
Q 6	Apply the LU decomposition method with the Doolittle technique for the decomposition of the coefficient matrix to solve the given system of simultaneous linear equations.				
	$[2 \ 3 \ 1] tx_1 [9]$	10	CO3		

 $\begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 6 \\ 8 \end{bmatrix}$

Name:

Enrolment No:

Q 7	Apply Newton's forward interpolation to estimate the velocity at $x = 0.4 cm$ for a fluid near a flat surface, given the velocity distribution provided below where x represents the distance from the surface (<i>cm</i>) and v denotes the velocity (<i>cm/s</i>).	10	CO2
	Distance (x)0.10.30.50.70.9Velocity (v)0.721.812.733.473.98		
Q 8	The following system of equations is designed to determine concentrations (the <i>c</i> 's in g/m^3) in a series of coupled reactors as a function of the amount of mass input to each reactor (the right-hand sides in g/day),		
	$15c_1 - 3\ c_2 - c_3 = 3300$	10	CO3
	$-3c_1 + 18c_2 - 6c_3 = 1200$		
	$-4c_1 - c_2 + 12c_3 = 2400$		
	Execute two iterations of the Gauss-Seidel method with an initial approximation set as $[c_1, c_2, c_3]^T = [0, 0, 0]$.		
Q 9	A ball at 1200 <i>K</i> is allowed to cool down in air at ambient temperature of 300 <i>K</i> . Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by		
	$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8), \ \theta(0) = 1200 K$		
	where θ is in <i>K</i> and and <i>t</i> in seconds. Determine the temperature at $t = 240 \text{ s}$ using the fourth order Runge-Kutta (RK) method, assuming a step size of $h = 240 \text{ s}$.	10	CO3
	OR		
	Solve the boundary value problem $(1 + x^2)y'' + 4xy' + 2y = 2, y(0) = 0, y(1) = 1/2$ by finite difference method. Use central difference approximations with $h = 1/3$.		
	SECTION C (2QX20M=40 Marks)		
Q 10	The ideal gas law is given by		
	pv = RT		
	where p is the pressure, v is the specific volume, R is the universal gas constant, and T is the absolute temperature. This equation is only accurate for a limited range of pressure and temperature. Vander Waals came up with an equation that was accurate for larger range of pressure and temperature given by	20	CO1

