Name: Enrolment No:			
End Semester Examination, December 2023 Program Name: Electronics \& Communication Engineering/ Electronics \& Computer Engineering Semester: III Course Name: Digital System Design Time: $\mathbf{3}$ hrs Course Code: ECEG-2037 Max. Marks: 100 Nos. of page(s): 2 Instructions: Assume any data in the design, if required.			
SECTION-A (5Q x 4M = 20 Marks)			
S. No.		Marks	CO
Q. 1	Explain the followings with example for digital logic families. (a) Fan-in (b) Fan-out (c) Propagation delay (d) Noise Margin (e) Power dissipation	5	CO4
Q. 2	Discuss the functionality of JK flip-flop with truth table, characteristics table, equation and support design using NAND and NOR logic.	5	CO3
Q. 3	Explain the functionality and logic diagram of the (3×8) decoder.	5	CO2
Q. 4	Solve the following function minters using 5 -variable K-MAP directly or the Tabulation method. $f(A, B, C, D, E)=\sum\left(m_{0}, m_{2}, m_{5}, m_{7}, m_{8}, m_{10}, m_{16}, m_{21}, m_{23}, m_{24}, m_{27}, m_{31}\right)$	5	CO1
SECTION B ($4 \mathrm{Q} \times 10 \mathrm{M}=40 \mathrm{Marks}$)			
Q. 5	Design a code converter that accepts 4-bit gray code as inputs and provides 4-bit binary output.	10	CO2
Q. 7	Detail the ECL logic family for non-saturated logic with complete description of the logic circuit and operation. How is it applicable for wired logic, AND, and OR operation? OR Design a 4-bit multiplier with complete description of functionality, truth table, and logic diagram that accepts two inputs. Input $\mathrm{A}=\boldsymbol{A}_{3} \boldsymbol{A}_{2} \boldsymbol{A}_{1} \boldsymbol{A}_{0}$ input $\boldsymbol{B}=\boldsymbol{B}_{3} \boldsymbol{B}_{2} \boldsymbol{B}_{1} \boldsymbol{B}_{0}$	10	$\mathrm{CO4}$
Q. 8	What is the difference between Mealy and Moore FSM? The state diagram of a Mooe FSM is shown. Design the FSM using D/JK flip-flop.	10	CO3

Q. 9	A sequential circuit is defined using the following logic diagram. Determine the following. (a) State transition equations (b) State Table (c) State diagram	10	CO3
Attem	any two of the following \quad SECTION-C (2Q x 20M = 40 Marks)		
Q. 10	Convert/implement the following. (a) JK flip-flop to D Flip-Flop (b) D- Flip-Flop to T-flip-flop (c) Full adder using the decoder (d) Multiplexer (16x1) using (4x1) multiplexer	20	CO2
Q. 11	(a) Compare the functionality of PAL, PLA, and PROM technology for PLDs. Implement the full subtractor function using PAL, PLA, and PROM. (b) Design BCD Adder using 4-bit binary adder and detail the complete behavior with equation and truth table	10+10	CO1
Q. 12	(a) Design a mod-12 synchronous counter using JK Flip-Flop. (b) What are the different operations of the shift register? Detail the operation of the 4bit shift register, logic diagram with timing diagram for any one operation.	15+5	$\mathrm{CO3}$

