Name: Enrolment No:			
Progr Cours Cours Nos. 0 Instru	UPES End Semester Examination, December, 2023 me Name: B Tech-Electronics and Communication Engineering Name : Analog Electronics-I Code : ECEG-2011 page(s) : 03 ions: Attempt all the sections.	Semes Time Max.	$\begin{aligned} & : \text { III } \\ & : 3 \mathrm{hr} \\ & \mathrm{~s}: 100 \end{aligned}$
SECTION A (5Qx4M=20Marks)			
S. No.	Attempt all the questions.	Marks	CO
Q 1	Defend the physical significance of operating point (Q) location on DC load line of Bipolar Junction Transistor (BJT). Show the optimal position of Q through DC load line and what will be the effect on the performance of transistor based amplifier if Q deviates from its original position.	4	CO1
Q2	For the system of Fig. (1), determine the level of output impedance. Fig. (1)	4	CO1
Q3	Sketch and analyze the transconductance curve which gives us the relationship between drain current $\left(I_{D}\right)$ and gate-to-source voltage $\left(V_{G S}\right)$.	4	CO2
Q4	Define the terms for Junction field effect transistor (JFET), (a) A. C. drain resistance $\left(r_{d}\right)$ (b) Amplification factor (μ) (c) Input resistance $\left(R_{i}\right)$	2+1+1	CO3
Q5	Write the overall gain ' A ' of the three-stage operation amplifier as connected in the series connection. Note: First op-amp is Non-inverting and rest two op-amps are inverting. Draw the connection diagram also.	4	CO4

SECTION B (4Qx10M= 40 Marks)			
Q 6	For the CE amplifier shown in Fig. (2), following data are given: $h_{i e}=1.1 \mathrm{k} \Omega, \quad h_{r e}=1.5 \times 10^{-4}, \quad h_{f e}=50, \quad h_{o e}=24 \mu \mathrm{~A} / V$. Calculate: $A_{i}, A_{v}, R_{i}, A_{i s}$ and $A_{v s}$ for $R_{L}=10 \mathrm{k} \Omega$. Fig. (2)	10	CO1
Q7	Compare Junction field effect transistor (JFET) and Metal oxide semiconductor field effect transistor (MOSFET). An N-channel JFET has $I_{D S S}=8 m A$ and $V_{P}=-5 V$. Find the minimum value of $V_{D S}$ for pinch-off region and the drain current $I_{D S}$, for $V_{G S}=-2 V$ in the pinch-off region.	10	CO2
Q8	Determine the following for the network of Fig. (3), (a) $V_{G S Q}$ (b) $I_{D Q}$ (c) $V_{D S}$ (d) V_{D} (e) V_{G} (f) V_{S} Fig. (3)	10	CO3

Q9	Derive the expression of voltage gain for inverting operation amplifier. What will be range of voltage gain for the given operation amplifier circuit as shown in Fig. (4). Fig. (4)	10	$\mathrm{CO4}$
SECTION-C (2Qx20M=40 Marks)			
Q 10	(a) Determine the input and output impedances of the amplifier in Fig. (5). The op-amp data sheet gives $Z_{\text {in }}=2 M \Omega, Z_{\text {out }}=75 \Omega$ and open loop gain of 200,000 . Also determine the closed voltage gain and feedback fraction. Fig. (5) (b) Show the connection of three op-amp stages using an LM348 IC to provide outputs that are 10,20 , and 50 times larger than the input. Use a feedback resistor of $R_{f}=500 \mathrm{k} \Omega$ in all stages.	10+10	$\mathrm{CO3}$
Q11	(a) Show the connection of an LM124 quad op-amp as a three-stage amplifier with gains of $+10,-18$, and -27 . Use a $270 \mathrm{k} \Omega$ feedback resistor for all three circuits. What output voltage will result for an input of $150 \mu \mathrm{~V}$? (b) Design and analyze the following any two applications of operation amplifier, (i) Averaging operation amplifier (ii) Substractor operation amplifier (iii) Integrator operation amplifier	10+10	CO4

