Name:

Enrolment No:

	UPES			
	End Semester Examination, December 2023			
,			ester: III	
Program: B. Tech Electronics and Computer EngineeringTimeCourse Code: ECEG 2049Max		e : 03 hrs. x. Marks: 100		
				Instruc
	The diagram must be neat and clean.			
	SECTION A			
	(5Qx4M=20Marks)			
S. No.		Marks	CO	
Q 1	A 4-bit input message (1001) is fed into a linear block coder. Find the output			
	code, if the H matrix of linear block code is given as			
		4	CO2	
	$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$			
0.0				
Q 2	A convolution coder is made up of 3 shift registers and has the following			
	condition for the output code.	4	CO2	
	$S_1 = M_1 + M_3$, $S_2 = M_2 + M_3 + M_4$, and $S_3 = M_1 + M_2$.			
	Determine the output code when the input to this is 1101 .			
Q 3	Frequency modulation is employed to transmit a music signal. Illustrate the	4	CO2	
<u> </u>	block diagram depicting how the signal can be received.			
Q 4	Create a block diagram that represents a modem utilizing the BFSK (Binary	4	CO1	
	Frequency Shift Keying) technique.			
Q 5	Find the Fourier transform of a pulse signal . Sketch the two waveforms.	4	CO1	
	SECTION B			
	(4Qx10M= 40 Marks)			
Q 6	The generator polynomial of a cyclic code is $G(x) = x^3 + x + 1$. Determine the			
	code of these input messages using systematic cyclic code.			
	(a) 1111	10	CO2	
	(b) 1001	10	002	
	(c) 0010			
	(d) 1101			
Q 7	What is the bandwidth of the base (unmodulated) message of a TV signal?			
	Determine the necessary bandwidth required for this signal to be modulated	10	CO3	
	under the following three conditions.			

	(a) Dable Side Dand Amplitude Madulation with a madulation in tor of		
	(a) Doble Side Band Amplitude Modulation with a modulation index of 0.5		
	(b) Vestige Side Band Amplitude Modulation with a modulation index of 1.		
	(c) Frequency Modulation with a modulation index of 4 .		
Q 8	Discuss the selection of digital modulation methods for transmitting signals		
۷٥	over the air between transmitter and receiver. Enumerate the various		
	categories of digital modulation techniques and provide a technical	10	CO3
	comparison between them.		
Q 9	Define Nyquist sampling rate.		
Q)	When a message reaches its maximum frequency of f_m and is sampled at a		
	rate of f_s , analyze the implications under three distinct conditions using a		
	well-defined frequency domain illustration.	10	CO2
	(a) $f_s = 2 f_m$	10	002
	(b) $f_s < 2 f_m$		
	(c) $f_s \ge 2 f_m$		
	SECTION-C		
	(2Qx20M=40 Marks)		
Q 10	A music signal is represented as $m(t) = (2 \cos 100\pi t + 5 \cos 200\pi t + 2 \cos 100\pi t)$		
	$400\pi t + 3 \cos 500\pi t + 2 \cos 600\pi t$). If this signal is converted into a stream		
	of 0 and 1, with the help of an ideal sampling and a quantizer of 2048 levels.		
	The incoming bits are then transmitted using wireless communication to		
	another station. The modulation employed is that class of phase shift keying		
	in which 4 bits are joined together to make a symbol.		
	Then determine the following.	20	CO4
	(a) Number of bits coming out in 10 mins from a binary coder that		
	follows the quantizer?		
	(b) Bit rate of the Modem		
	(c) Symbol rate of the Modem		
	(d) Minimum bandwidth required to transmit the signal.		
	(e) Capacity of the line between two stations with a SNR of 20 dB.		
Q 11	Determine the code Shanon-Fano coding and construct the code tree for the		
	symbols x_i (i = 1 to 8) with P = {1/4, 1/8, 1/8, 1/8, 1/8, 1/8, 1/16, 1/16}.	20	
	A source X has nine symbols represented as x1, x2, x3, x4, x5, x6, x7, x8 and x9		CO2
	with $P(x_1) = 0.31$, $P(x_2) = 0.21$, $P(x_3) = 0.11$, $P(x_4) = 0.13$, $P(x_5) = 0.08$, $P(x_6)$		002
	$= 0.05$, $P(x_7) = 0.05$, $P(x_8) = 0.01$ and $P(x_9) = 0.05$. Determine the code using		
	Huffman coding.		