Name: Enrolment No:			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Resolve each force acting on the post into its x and y components.	4	CO 2
Q 2	Define coefficient of friction and angle of friction. Establish a relation between them.	4	CO1
Q 3	What are the conditions of equilibrium in concurrent and non-concurrent force system?	4	CO1
Q 4	State the principle of virtual work and law of conservation of momentum.	4	CO2
Q 5	In each case shown below, determine the moment of a force about point O .	4	CO 2

$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	State the theorems of Pappus and Guldinus. Illustrate it with the determination of (a) Surface area of a cylinder (Radius R and Length L), (b) Volume of Sphere of radius R.	10	$\mathrm{CO3}$
Q 7	Determine the magnitude and direction of the resultant of the forces acting on the ring as shown in figure below.	10	CO 3
Q 8	Determine the reactions at the supports A and B on the rod.	10	CO 3
Q 9	Determine the centroid of the shaded area shown in figure below.	10	CO 2

$\begin{gathered} \text { SECTION-C } \\ (2 \mathrm{Qx} 20 \mathrm{M}=40 \mathrm{Marks}) \end{gathered}$			
Q 10	(a) A disabled automobile is pulled by means of two ropes as shown. Knowing that the tension in rope AB is 3750 N , determine by trigonometry the tension in rope AC and the value of angle, so that the resultant force exerted at A is a 6000 N force directed along the axis of the automobile. (b) Determine the center of gravity of a quadrant AB of the arc of the circle of Radius R as shown in figure below.	10	CO 3
Q 11	State and prove Parallel axis and Perpendicular axis theorm of moment of inertia. Also, explain Radius of gyration. OR State and explain the following terms: (a) Co-efficient of Friction and Angle of Friction, (b) Work Energy Theorm, (c) D' Alembert Principle. Two bodies of masses 80 kg and 20 kg are connected by a thread along a rough horizontal surface under the action of force 400 N applied to the first body of mass 80 kg as shown in figure below. The coefficient of friction between the sliding surfaces of the bodies and plane is 0.3 . Determine the acceleration of the two bodies and the tension in the thread using D' Alembert Principle.	20	CO 2

