

9	A liquid fermentation medium at $30^{\circ} \mathrm{C}$ is pumped at a rate of $2000 \mathrm{~kg} / \mathrm{h}$ through a heater, where it is heated to $70^{\circ} \mathrm{C}$ under pressure. The waste heat water used to heat this medium enters at $95^{\circ} \mathrm{C}$ and leaves at $85^{\circ} \mathrm{C}$. The average heat capacity of the fermentation medium is $4.06 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, and that for water is $4.21 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$. The fermentation stream and the wastewater stream are separated by a metal surface through which heat is transferred and the streams do not physically mix with each other as shown in figure below. Calculate the water flow rate required and the amount of heat added to the fermentation medium assuming no heat losses.	10	CO4
	$\begin{gathered} \text { SECTION C } \\ (2 \times 20=40 \text { marks }) \end{gathered}$		
10	In anaerobic digestion of grain, the yeast saccharonnyces cerevisiae digests glucose from plants to form products ethanol and propionic acid according to Reaction 1: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}-\cdots-----\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CO}_{2}$ Reaction 2: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}-------\rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}+2 \mathrm{H}_{2} \mathrm{O}$ In a batch process, 4000 Kg of a 12% glucose/water solution is charged, and after fermentation 120 Kg of carbon dioxide is produced leaving 90 kg of glucose unreacted. Compute the weight percent of ethyl alcohol and propionic acid remaining in the broth.	20	CO 3
11	One kg of water is heated from 250 K to 400 K at one standard atmospheric pressure. Estimate, how much heat is required for this? Data: The mean heat capacity of ice $\mathrm{Cp}=2.03 \mathrm{KJ} / \mathrm{kmol} \mathrm{K}$ (between 250 and 273 K) The heat capacity of water between 273 K and 373 K is $1 \mathrm{btu} / \mathrm{lb}{ }^{\circ} \mathrm{F}$. The heat capacity of water vapor from 373 to 400 K is $\mathrm{Cp}=30.475+9.652 \times 10^{-3} \mathrm{~T}+1.189 \times 10^{-6} \mathrm{~T}^{2}$ The latent heat of fusion of water is $144 \mathrm{btu} / \mathrm{lb}$ and that of vaporization is 40608 KJ/Kmol. OR The heat capacity of benzene at two different temperatures is Fit the data into an equation of the form $\mathrm{Cp}=\mathrm{a}+\mathrm{bT}$. Calcualte the heat required to convert 100 kg of liquid benzene from 293.15 K to saturated vapor at the boiling point of 353.25 K . The latent heat of vaporization may be calculated using the Kistyakowsky equation $\frac{\Delta H}{T_{b}}=36.63+8.31 \ln T_{b}$ where Tb is the boiling point of benzene and $\Delta \mathrm{H}$ is the heat of vaporization.	20	$\mathrm{CO4}$

