Name: Enrolment No:			
SECTION A (20 M)			
S. No.		Marks	CO
Q1	Explain the concept of pump priming, NPSH and pump cavitation.	4	CO1
Q2	Explain the behaviour of non- Newtonian fluid, shear rate thinning and shear rate thicknening fluids with their examples.	4	CO1
Q3	What do you understand by major loss and minor loss.	4	CO1
Q4	Elaborate the advantages and limitations of venturi meter and orifice meter.	4	CO1
Q5	Discuss the static, dynamic, stagnation and piezometric pressure.	4	CO1
SECTION B (40 M)			
Q6	Two coaxial glass tubes forming an annulus with a small gap are immerged in water. The inner and outer radii of the annulus are r_{2} and r_{1} respectively. What is the capillary rise of water in the annulus if the surface tension of water is $0.073 \mathrm{~N} / \mathrm{m}$ and contact angle is 30 degree. Derive the expression and solve the problem.	10	CO3
Q7	A nozzle is used to increase the velicity of fluid. A fluid whose density and velocity varies with the position in the pipeline. The velocity (u) and density (ρ) fields if the fluid through the nozzle is given by, $u=u_{0} e^{\left(-\frac{2 x}{L}\right)}$ and $\rho=\rho_{0} e^{\left(-\frac{x}{L}\right)}$. Show that the rate of change of density in Lagrangian frame of reference is $\frac{-0.05 u_{0} \rho_{0}}{L}$.	10	CO2
Q8	The velocity distribution for a fully developed laminar flow in a circular pipe of radius, R , is given by, $u=-\frac{R^{2}}{4 \mu} \frac{d P}{d x}\left[1-\left(\frac{r}{R}\right)^{2}\right]$. Determine the expressions for total discharge and pressure drop through the pipe of length L. The terms have their usual meanings.	10	CO 3

Q9	A metal plate $1.25 \mathrm{~m} \times 1.25 \mathrm{~m} \times 6 \mathrm{~mm}$ thick and weighing 90 N is placed midway in the 24 mm gap between the two vertical plane surfaces. The gap is filled with an oil of specific gravity 0.85 and dynamic viscosity $3.0 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$. Determine the force required to lift the plate with a constant velocity of $0.15 \mathrm{~m} / \mathrm{s}$.	10	CO 2
	SECTION C (40 M)		
Q10	An hydrocarbon oil (mol. wt. $=220$; density $=1.8 \mathrm{gm} / \mathrm{cc}$. , and viscosity $=0.005 \mathrm{~Pa} . \mathrm{s}$) is beinh pumped from a storage tank at ground floor to the top of the distillation column of height 10 m at the rate of $2000 \mathrm{~kg} / \mathrm{min}$ through a 5 cm inner diameter smooth pipe. The pump efficiency is 60%, calculate the pump power rwquirement. The losses of the pump can be taken as $1.5 \mathrm{kgf}-\mathrm{m} / \mathrm{kg}$.	20	$\mathrm{CO4}$
Q11	A necked-down or venturi section of a pipe flow develops a low pressure which can be used to aspirate liquid upward from a reservoir as shown in Figure below. Develop an expression for the exit velocity V_{2} which is just sufficient to cause the reservoir liquid to rise in the tube up to section 1 . Consider the liquid originally flowing through the pipe and that to be pumped from the reservoir are same (neglect frictional losses).	20	$\mathrm{CO4}$

