Name:

Enrolment No:

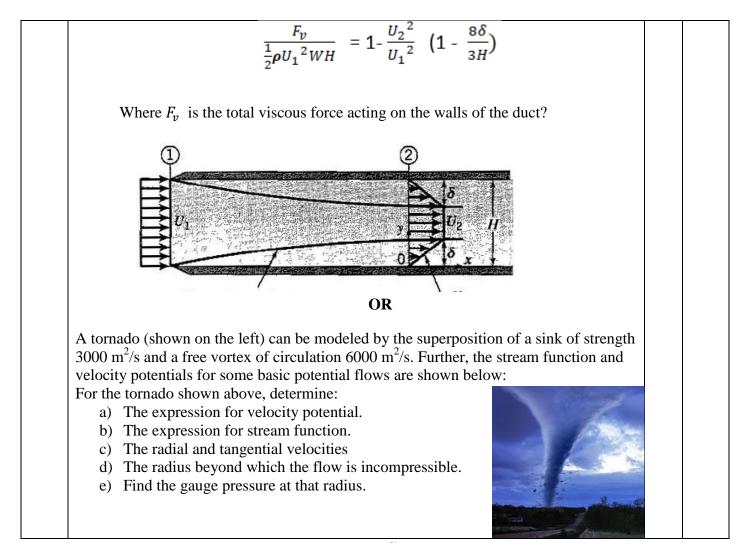
UPES

End Semester Examination, December 2023

Course: Applied Fluid Mechanics Program: B. Tech Aerospace Engineering Course Code: MECH2002

Semester: III Time : 03 hrs. Max. Marks: 100

Instructions:


- Section A constitutes of 20 Marks (5 questions x 4 marks); Attempt All.
- Section B constitutes of 40 Marks (4 questions x 10 marks). Attempt All (One choice question).
- Section C constitutes of 40 Marks (2 questions x 20 marks). Attempt All (One choice question).

SECTION A (50x4M-20Marks)

	(5Qx4M=20Marks)		
S. No.		Ma rks	СО
Q 1	 Read these statements and answer the question that follow Raghav: All inviscid flows are irrotational. Raghunath: All irrotational flows are inviscid. Raghuram: All viscous flows are rotational. Raman: All viscous flows are irrotational. Ramesh: All irrotational flows are inviscid. Who is/are correct? Justify your answer with examples. (None/All of the choices may also be correct) 	4	CO1
Q 2	Automobiles need to breathe in air for purposes such as cooling of engines. This may lead to an additional 'cooling drag' on the automobiles The pictures and the plots below represent this phenomenon:	4	C01

	Explain briefly	Number of Car	20 20 15 10 5 0.	01 0.02 ag coeffic	0.03	0.04 0	N = 71 $\Delta C_{DR} = 0.03$ 0.05 0.06 ΔC_{DR} 7? (Be bri			
Q 3	Consider the flow field given by V = xi + ytj This flow is unsteady (it depends on time) and two-dimensional (it depends on two space coordinates, x and y). Find the shape of (a) The streamline and; (b) The pathline passing through the point [1,1] at time t = 0. Plot the streamline and pathlines in both cases.					ls on two	4	CO1		
Q 4	The Martian atmosphere behaves as an ideal gas with mean molecular mass of 32.0 and constant temperature of 200 K. The atmospheric density at the planet surface is $\rho = 0.015 \text{ kg/m}^3$ and Martian gravity is 3.92 m/s ² . Calculate the density of the Martian atmosphere at height =520 km above the surface.							4	CO1	
Q5	A centrifugal water rate, Q, and pressure Q 0 5 (L/min)	pump running a			pm has 1 140 3.03	the follo 150 2.38	wing data 165 1.23	a for flow	[5]	соз
	The pessure head is density $\boldsymbol{\rho}$. Plot the p this problem, and, fr	pressure head ve	rsus flov plot one	w rate cu	rve. Find the other	l the two				
Q 6	The Colebrook equation for computing the turbulent friction factor is implicit in f . An explicit expression [31] that gives reasonable accuracy is $f_0 = 0.25 \left[\log \left(\frac{e/D}{3.7} + \frac{5.74}{Re^{0.9}} \right) \right]^{-2}$ Compare the accuracy of this expression for f with the equation above by computing the percentage discrepancy as a function of Re and e/D, for Re = 10^4 to 10^8, and e/D = 0, 0.0001, 0.001, 0.01, and 0.05. What is the maximum discrepancy for these Re and e/D values? Plot f against Re with e/D as a parameter.						10	CO2		

Q 7	For flow over a hypothetical flat plate of length <i>L</i> , the velocity profile can be		
	approximated as		
	$\frac{u}{U} = 0.7 \frac{y}{\delta}$		
	$U \qquad \delta$ Find:	10	CO2
	a) Boundary layer thickness at a distance x.		
	b) Shear stress at a distance x		
	c) Local drag coefficient		
	d) Coefficient of Drag		
Q 8	Gasoline flows in a long, underground pipeline at a constant temperature of 15 degree		
	Celsius. Two pumping stations at the same elevation are located 13 km apart. The pressure drop between the stations is 1.4 MPa. The pipeline is made from 0.6-m-		
	diameter pipe. Although the pipe is made from commercial steel, age and corrosion		
	have raised the pipe roughness to approximately that for galvanized iron. Compute the		
	volume flow rate. How long will it take for the Gasoline flowing through such a		
	pipeline to fill a 10,000 L tank?		
		10	~~~
	OB	10	CO3
	OR		
	A high school project involves building a model ultralight airplane. Some of the		
	students propose making an air foil from a sheet of plastic 5 m long 3.7 m wide at an		
	angle of attack of 10 degrees. At this air foil's aspect ratio and angle of attack the lift		
	and drag coefficients are $C_L = 0.75$ and $C_D = 0.19$. If the airplane is designed to fly at		
	40 m/s, what is the maximum total payload? What will be the required power to		
Q 9	maintain flight? Does this proposal seem feasible? Two immiscible fluids of equal density are flowing down a surface inclined at a 60		
Q y	degree angle. The two fluid layers are of equal thickness $h=10$ mm; the kinematic		
	viscosity of the upper fluid is $1/5^{\text{th}}$ that of the lower fluid, which is V lower = 0.01	10	004
	m^2/s . Find the velocity at the interface and the velocity at the free surface. Plot the	10	CO4
	velocity distribution.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Using Continuity and Navier-Stokes Equation in cylindrical coordinates for fluid flow		
	between two parallel plates, derive expressions for	20	CO3
	a) Velocity profile between two plates spaced distance <i>D</i> apart.	20	005
0.11	b) Relationship between discharge and pressure drop over length <i>L</i> of the plates.		
Q 11	The entrance region of a parallel, rectangular duct flow is shown in figure. The duct has a width W and height H, where $W \ge H$. The fluid density a is constant, and the flow		
	a width W and height H, where W >> H. The fluid density ρ is constant, and the flow is steady. The velocity variation in the boundary layer of thickness δ at station is		
	assumed to be linear, and the pressure at any cross- section is uniform.		
	(a) Using the continuity equation, shows that $U_1/U_2 = 1 - \delta/H$.	•	
		20	CO4
	(b) Find the pressure coefficient $C_p = (p_1 - p_2)/(\frac{1}{2}\rho U_1^2)$		
	(c) Show that		

Appendix

Haaland Equation :

$$\frac{1}{\sqrt{f}} = -1.8 \log \left[\frac{6.9}{Re} + \left(\frac{\varepsilon/D}{3.7} \right)^{1.11} \right]$$

Potential Flows:

Description of Flow Field	Velocity Potential	Stream Function	Velocity Components ^a
Uniform flow at angle α with the x axis (see Fig. 6.16b)	$\phi = U(x\cos\alpha + y\sin\alpha)$	$\psi = U(y\cos\alpha - x\sin\alpha)$	$u = U \cos \alpha$ $v = U \sin \alpha$
Source or sink (see Fig. 6.17) m > 0 source m < 0 sink	$\phi = \frac{m}{2\pi} \ln r$	$\psi = \frac{m}{2\pi} \theta$	$v_r = \frac{m}{2\pi r}$ $v_\theta = 0$
Free vortex (see Fig. 6.18) $\Gamma > 0$ counterclockwise motion $\Gamma < 0$ clockwise motion	$\phi = \frac{\Gamma}{2\pi} \theta$	$\psi = -\frac{\Gamma}{2\pi} \ln r$	$v_r = 0$ $v_\theta = \frac{\Gamma}{2\pi r}$
Doublet (see Fig. 6.23)	$\phi = \frac{K\cos\theta}{r}$	$\psi = -\frac{K\sin\theta}{r}$	$v_r = -\frac{K\cos\theta}{r^2}$ $v_{\theta} = -\frac{K\sin\theta}{r^2}$

Momentum Equations in Cartesian Coordinates:

$$\rho\left(\frac{\partial U}{\partial t} + U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial y} + W\frac{\partial U}{\partial z}\right) = -\frac{\partial P}{\partial x} + \rho g_x + \mu\left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}\right)$$
$$\rho\left(\frac{\partial V}{\partial t} + U\frac{\partial V}{\partial x} + V\frac{\partial V}{\partial y} + W\frac{\partial V}{\partial z}\right) = -\frac{\partial P}{\partial y} + \rho g_y + \mu\left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}\right)$$
$$\rho\left(\frac{\partial W}{\partial t} + U\frac{\partial W}{\partial x} + V\frac{\partial W}{\partial y} + W\frac{\partial W}{\partial z}\right) = -\frac{\partial P}{\partial z} + \rho g_z + \mu\left(\frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2} + \frac{\partial^2 W}{\partial z^2}\right)$$