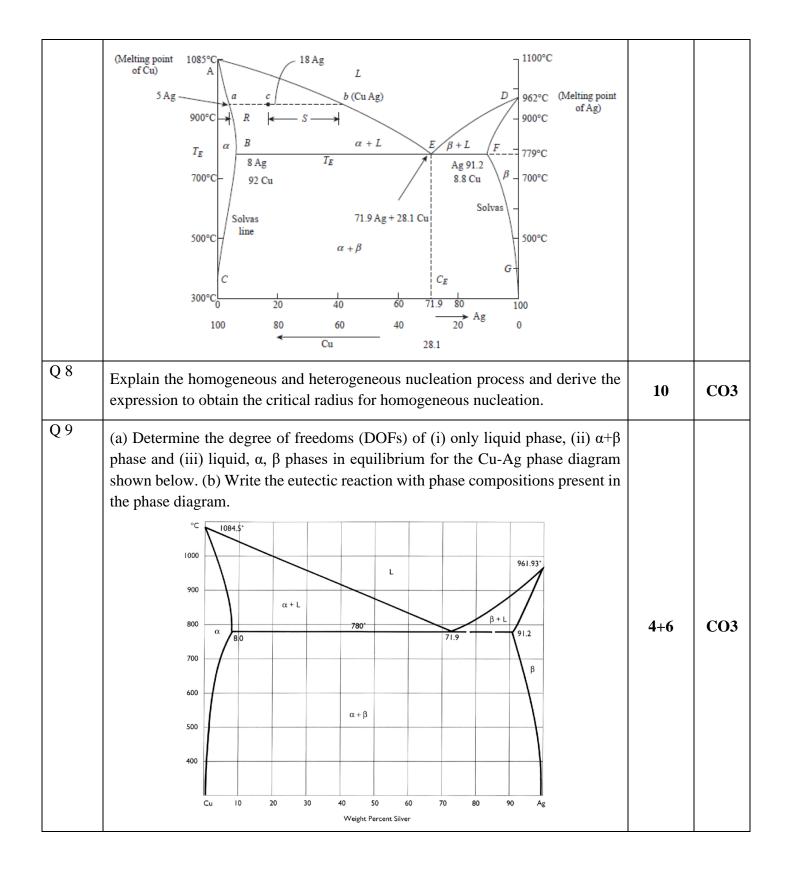
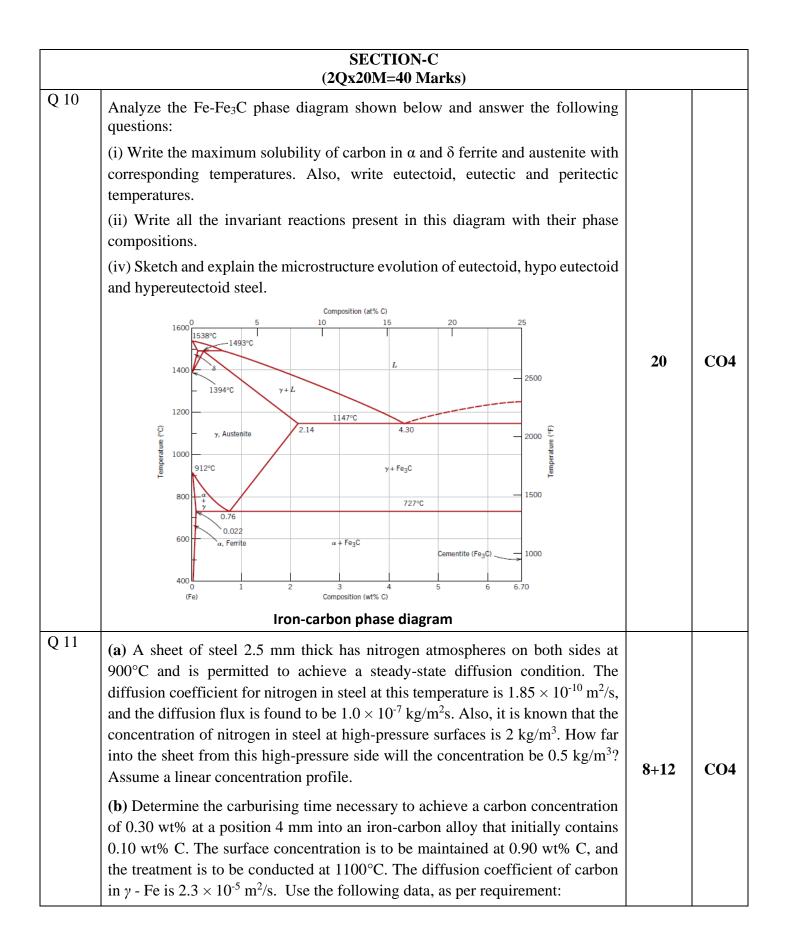
Name:

Enrolment No:


UPES


End Semester Examination, December 2023

Course: Automotive Materials Program: B.Tech (ADE) Course Code: MEAD2006 Semester: III Time : 03 hrs. Max. Marks: 100

Instructions: Assume suitable values of variables/parameters if not given in the problem.

SECTION A (5Qx4M=20Marks)			
S. No.		Marks	СО
Q 1	Explain the following: (i) Crystalline (single/poly) and amorphous materials, (ii) Space lattice and Unit cells	4	CO1
Q 2	State the following: (i) Crystal systems and Bravais lattices, (ii) Allotropy or Polymorphism	4	CO1
Q 3	Differentiate BCC, FCC and HCP crystal structures and give an example for each structure.	4	CO1
Q 4	Iron has an atomic radius of 0.124 nm (1.24 Å) and a BCC structure with an atomic weight of 55.85 g/mol. Calculate the density of iron.	4	CO2
Q 5	Explain the purpose of the heat treatment process in steels.	4	CO2
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Describe the following mechanical properties of materials: (a) Yield and Ultimate Tensile Strength (b) Engineering and True stress, strain (c) Ductility, Resilience, Toughness and Hardness	10	CO1
Q 7	Analyze the phase diagram shown below and answer the following question. (i) Write the eutectic reaction present in this diagram with phase compositions (ii) If 18% Ag alloy composition is cooled from the shown temperature (962°C) to just below the eutectic temperature (779°C), calculate the fraction of pro- eutectic and eutectic α phase in the final alloy composition.	10	CO2

OR(a) Explain Fick's first and second laws of diffusion.(b) At 950°C, a 0.8% carbon steel is decarburized for a duration of 4 hr in an
atmosphere equivalent to 0% carbon at the surface of the steel. Determine the
minimum depth up to which post-machining is to be done if the carbon content
at the surface after-machining should not be below 0.6%. The diffusion constant
of Carbon in Iron at the specified temperature is 1.38×10^{-11} m²/s.Use the following information, as per the requirement for Question 11: $\frac{C_x - C_0}{C_s - C_0} = 1 - erf\left(\frac{x}{2\sqrt{Dt}}\right)$
, erf (0.81) = 0.75, erf (0.778) = 0.722