Name:

Enrolment No:

	UPES		
	End Semester Examination, December 2023		
	Elements of Modern Physics	Semester:	III
$\mathbf{\Theta}$		-	: 03 hrs.
Course	Code: PHYS 2026	Max. Marks	: 100
Instruc	tions		
	All questions are compulsory (Q.No. 9 and Q.No. 11 has an internal choice	e)	
	Scientific calculators can be used for calculations.		
	SECTION A (5Qx4M=20Marks)		
• All qu	estions are compulsory; Each Question carries 4 Marks.		
Write	very Short Answers/ Solve.	-	
S. No.	Statement of question	Marks	CO
Q 1	The threshold frequency for photoelectric emission in copper is		
	$1.1 \times 10^{15} \text{ sec}^{-1}$. Find the maximum energy of photoelectrons when		001
	light of frequency 1.5×10^{15} sec ⁻¹ falls on a copper surface.	4	CO1
	$[h = 6.63 \times 10^{-34} \text{ Joule} - \text{sec}]$		
Q 2	Mention any four properties of matter waves.	4	CO1
Q 3	Explain the nuclear fission and fusion processes.	4	CO1
Q 4	A He-Ne laser of wavelength 6328 Å has an internal beam of radius	4	CO2
	0.46 mm. What would be the beam divergence angle.		
Q 5	Explain about the main components to produce laser.	4	CO1
	SECTION B (4Qx10M= 40 Marks)		
All qu	estions are compulsory, Q.No. 9 has an internal choice, Each Question car	ries 10 Mark	S.
-	Short/ Brief notes/ Derive/ Solve		
S. No.	Statement of question	Marks	СО
Q 6	Explain the properties of the nucleus with reference to size, charge, and		
	mass. What are nuclear forces? Discuss the characteristics of nuclear	10	CO 2
~ -	forces.		
Q 7	The position and momentum of a 4 keV electron are simultaneously		
	measured. If the position is located within 4 Å, what is the percentage of	10	CO 3
	uncertainty in momentum. $I_{m} = 0.11 \times 10^{-31} \log h = 6.62 \times 10^{-34} \log h = 0.001$		
0.8	$[m_o = 9.11 \times 10^{-31} \text{ kg}, h = 6.63 \times 10^{-34} \text{ Joule - sec}]$		
Q 8	Illustrate the construction of a gas laser with a neat diagram and explain its working with the help of an energy level diagram.	10	CO 1
Q 9	(a) What is Compton Effect? Show that the direction of the recoiled		
ų ٢	(a) what is compton Effect: show that the uncerton of the reconct		

	electron in Compton's effect is $\tan \phi = \frac{\cot \frac{\theta}{2}}{1 + \frac{hv}{m_0 c^2}}$ where θ is the scattering angle and ϕ is the angle of the recoiled electron. (10) OR (b) Show that the de Broglie wavelength of a material particle of rest mass m_o and charge e , accelerated from rest through a potential difference V volts relativistically is $\lambda = \frac{h}{\sqrt{2m_o eV\left\{1 + \left(\frac{eV}{2m_0 c^2}\right)\right\}}}$ (10)	10	CO3
	(10) SECTION-C (2Qx20M=40 Marks)		
• All qu	estions are compulsory, Q.No. 11 has an internal choice, Each Question car	ries 20 Mark	S.
• Write	long answer/ Derive/ Solve		T
S. No.	Statement of question	Marks	СО
Q 10	(a) Explain about the single step potential barrier. Derive expressions for		CO4
	the reflection coefficient and transmission coefficient when the		0.04
	anarow of the northole is less than the height of the herrier (15)		
	energy of the particle is less than the height of the barrier. (15) (b) Calculate the lowest energy of an electron confined in a 3 D cubical	20	
	(b) Calculate the lowest energy of an electron confined in a 3-D cubical	20	CO3
0.11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (5) 	20	
Q 11	(b) Calculate the lowest energy of an electron confined in a 3-D cubical	20	
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (5) (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory 	20	
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (5) (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory of β-decay. (10) (b) Derive a relation between the half-life time and mean lifetime. The half-life of Radon is 3.8 days. After how many days will only 	20	
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (5) (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory of β-decay. (10) (b) Derive a relation between the half-life time and mean lifetime. The half-life of Radon is 3.8 days. After how many days will only one-twentieth of the radon sample be leftover. 	20	
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory of β-decay. (10) (b) Derive a relation between the half-life time and mean lifetime. The half-life of Radon is 3.8 days. After how many days will only one-twentieth of the radon sample be leftover. (answer upto the second decimal) (use log₁₀ 20 = 1.3010) (10) 	20	CO 3
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (5) (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory of β-decay. (10) (b) Derive a relation between the half-life time and mean lifetime. The half-life of Radon is 3.8 days. After how many days will only one-twentieth of the radon sample be leftover. (answer upto the second decimal) (use log₁₀ 20 = 1.3010) (10) 	20	CO 3
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (5) (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory of β-decay. (10) (b) Derive a relation between the half-life time and mean lifetime. The half-life of Radon is 3.8 days. After how many days will only one-twentieth of the radon sample be leftover. (answer upto the second decimal) (use log₁₀ 20 = 1.3010) (10) (c) Derive a relation for the semi-empirical mass formula for the nucleus 	20	CO 3 CO 2
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory of β-decay. (10) (b) Derive a relation between the half-life time and mean lifetime. The half-life of Radon is 3.8 days. After how many days will only one-twentieth of the radon sample be leftover. (answer upto the second decimal) (use log₁₀ 20 = 1.3010) (10) (c) Derive a relation for the semi-empirical mass formula for the nucleus 		CO 3 CO 2
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory of β-decay. (10) (b) Derive a relation between the half-life time and mean lifetime. The half-life of Radon is 3.8 days. After how many days will only one-twentieth of the radon sample be leftover. (answer upto the second decimal) (use log₁₀ 20 = 1.3010) (10) OR (c) Derive a relation for the semi-empirical mass formula for the nucleus giving arguments for each of the terms involved. (10) (d) Explain the terms mass defect, packing fraction and binding energy of the nucleus. 		CO 3 CO 2
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (5) (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory of β-decay. (10) (b) Derive a relation between the half-life time and mean lifetime. The half-life of Radon is 3.8 days. After how many days will only one-twentieth of the radon sample be leftover. (answer upto the second decimal) (use log₁₀ 20 = 1.3010) (10) OR (c) Derive a relation for the semi-empirical mass formula for the nucleus giving arguments for each of the terms involved. (10) (d) Explain the terms mass defect, packing fraction and binding energy of the nucleus. Find the binding energy of Lithium nucleus and binding energy per 		CO 3 CO 2
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (5) (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory of β-decay. (10) (b) Derive a relation between the half-life time and mean lifetime. The half-life of Radon is 3.8 days. After how many days will only one-twentieth of the radon sample be leftover. (answer upto the second decimal) (use log₁₀ 20 = 1.3010) (10) OR (c) Derive a relation for the semi-empirical mass formula for the nucleus giving arguments for each of the terms involved. (10) (d) Explain the terms mass defect, packing fraction and binding energy of the nucleus. Find the binding energy of Lithium nucleus and binding energy per nucleon from the below-given data. 		CO 3 CO 2
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (5) (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory of β-decay. (10) (b) Derive a relation between the half-life time and mean lifetime. The half-life of Radon is 3.8 days. After how many days will only one-twentieth of the radon sample be leftover. (answer upto the second decimal) (use log₁₀ 20 = 1.3010) (10) OR (c) Derive a relation for the semi-empirical mass formula for the nucleus giving arguments for each of the terms involved. (10) (d) Explain the terms mass defect, packing fraction and binding energy of the nucleus. Find the binding energy of Lithium nucleus and binding energy per nucleon from the below-given data. Mass of Lithium nucleus = 7.006005 a.m.u. 		CO 3
Q 11	 (b) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 2 Å (5) (a) Explain the β-ray continuous spectrum. Explain the neutrino's theory of β-decay. (10) (b) Derive a relation between the half-life time and mean lifetime. The half-life of Radon is 3.8 days. After how many days will only one-twentieth of the radon sample be leftover. (answer upto the second decimal) (use log₁₀ 20 = 1.3010) (10) OR (c) Derive a relation for the semi-empirical mass formula for the nucleus giving arguments for each of the terms involved. (10) (d) Explain the terms mass defect, packing fraction and binding energy of the nucleus. Find the binding energy of Lithium nucleus and binding energy per nucleon from the below-given data. 		CO 3 CO 2