Name: Enrolment No:			
End Semester Examination, December 2023 Course: Analog Systems and Applications Semester Program: B. Sc (Honors) Physics Time Course Code: PHYS 2025 Max. Mar			
SECTION A			
S. No.		$\begin{gathered} \text { Ma } \\ \text { rks } \end{gathered}$	CO
Q 1	Draw the volt-ampere characteristics of a Zener diode. What is meant by Zener breakdown?	4	CO1
Q 2	Input and output voltage measurements of $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{o}}=25 \mathrm{~V}$ are made. What is the voltage gain in decibels?	4	CO1
Q 3	A transistor with $\alpha=0.98$ and $\mathrm{I}_{\mathrm{CBO}}=5 \mu \mathrm{~A}$ is biased so that $\mathrm{I}_{\mathrm{BQ}}=100 \mu \mathrm{~A}$. Find I_{CQ}, and I_{EQ}.	4	CO1
Q 4	Define the lower cutoff frequency, upper cutoff frequency, and bandwidth of a voltage amplifier.	4	CO1
Q 5	List the advantages and disadvantages of negative feedback in the amplifier.	4	CO1
SECTION B			
Q 6	(a) Draw the circuit of a half wave rectifier circuit with capacitor filter. Draw the output voltage with and without load and explain qualitatively. (b) Show that the ripple factor of full wave rectifier (without filter) circuit is 1.21	10	CO 2
Q 7	(a) Determine I_{C} and V_{CE} for the network of the figure given below (b) Change β to 120 (50% increase) and determine the new values of I_{C} and $V_{C E}$ for the network of Fig. (c) Determine the magnitude of the present change in I_{C} and V_{CE} using the following equation	10	CO 2

Q 8	Explain the concept of virtual ground in the analysis of OP AMP. Derive the expression of voltage gain in case of non-inverting operational amplifier.	10	CO2
Q 9	Draw a family of input and output characteristics of common base configuration of BJT. Explain the shape of these curves qualitatively.	10	CO2
	SECTION-C Attempt any one out of Q11 and Q12		
Q 10	Draw the hybrid equivalent model of BJT. Give the physical significance of each hybrid-parameter involved in the equivalent circuit. Derive an analytical expression for the input impedance, Z_{i} current gain, A_{I}, voltage gain, A_{V}, and output impedance, Z_{o} in terms of these parameters.	20	CO3
Q 11	(a) Determine the output voltage of an op-amp for input voltages of $\mathrm{V}_{\mathrm{i} 1}=150 \mu \mathrm{~V}$, $\mathrm{V}_{\mathrm{i} 2}=140 \mu \mathrm{~V}$. The amplifier has a differential gain of $\mathrm{Ad}=4000$ and the value of CMRR is: (a) 100. (b) 10^{5}	10	CO3

