Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Mathematical Physics - II Program: B.Sc.(H) Phys. Course Code: PHY 2024 Semester: 3rd Time : 03 hrs. Max. Marks : 100

Instructions:

	SECTION A (5Qx4M=20Marks)		
S. No.	Answer all the questions	Marks	СО
Q 1	Show that the order of an element in a group and its inverse is same.	4	CO1
Q 2	Evaluate the integral $\int_{0}^{\frac{\pi}{2}} (\sqrt{\tan \theta} + \sqrt{\cot \theta}) d\theta$	4	CO2
Q 3	Find the generating function for the Bessel's function $J_n(x)$.	4	CO2
Q 4	Derive the series expansion of the error function.	4	CO4
Q 5	Use the separation of variables to convert the partial differential equation into two ordinary differential equation $u + u = 0$	4	CO3
	$u_{tt} + u_{xt} + u_x = 0$ SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Consider the integral to find the value $\int_0^1 \left(\frac{x}{1-x^3}\right)^{1/2} dx$	10	CO3
Q 7	Show that the mapping $\varphi \colon \mathbb{R}^+ \to \mathbb{R}^+$ defined by $\varphi(x) = \sqrt{x}$ is an automorphism.	10	CO1
Q 8	If $P_n(x)$ denote the Legendre's polynomial, then show that $\int_{-1}^{1} [P_n(x)]^2 dx = \frac{2}{2n+1}.$	10	CO2
Q 9 (a)	Let V be the collection of 2×2 matrices with real entries is a vector space over \mathbb{R} , Then show that $W = \{A \in V \mid A^2 = A\}$ is not a subspace of $V(\mathbb{R})$. OR If $\{u, v, w\}$ is a linearly independent subset of a vector space $V(\mathbb{R})$, then show that $\{u, u + v, u + v + w\}$ is also linearly independent set.	5	CO1
Q 9(b)	If <i>V</i> be a vector space over \mathbb{R} with dimension 5, and <i>U</i> and <i>W</i> are two subspaces of <i>V</i> of dimension 3. Then prove that $U \cap W \neq \{0\}$. OR	5	CO1

	Let <i>V</i> be a vector space of collection of all polynomial of degree <i>n</i> with					
	real coefficients. Then establish the basis set for $V(\mathbb{R})$.					
	SECTION-C					
(2Qx20M=40 Marks)						
Q10	(a)Establish the relation $\beta(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$ for $m, n > 0$. (12)					
	(b)Prove that $\frac{d}{dx}[erf_c(\alpha x)] = -\frac{2\alpha}{\sqrt{\pi}}e^{-\alpha^2 x^2}$, all notations have their	20	CO4			
	usual meaning. (8)					
Q 11	Use the separation of variables, to find the solution of the Laplace					
	equation $u_{xx} + u_{yy} = 0$, under the boundary conditions					
	u(x,0) = 0, (0 < x < 2)					
	u(x, 1) = 0, (0 < x < 2)					
	u(0, y) = 0, (0 < y < 1)					
	$u(2, y) = a \sin 2\pi y$, $(0 < y < 1)$.	20	CO3			
	OR					
	A string is stretched and fastened to two points <i>l</i> apart. Motion is started					
	by displacing the string into the form $y = k (lx - x^2)$ from which it is					
	released at time $t = 0$. Find the displacement of any point on the string					
	at a distance of x from one end at time t.					