Name: Enrolment No:			
End Semester Examination, December 2023 Course: Mathematical Physics - II Semester: 3rd Program: B.Sc.(H) Phys. Time $: \mathbf{0 3}$ hrs. Course Code: PHY 2024 Max. Marks: 100 Instructions:			
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \\ \hline \end{gathered}$			
S. No.	Answer all the questions	Marks	CO
Q 1	Show that the order of an element in a group and its inverse is same.	4	CO1
Q 2	Evaluate the integral $\int_{0}^{\frac{\pi}{2}}(\sqrt{\tan \theta}+\sqrt{\cot \theta}) d \theta$	4	CO2
Q 3	Find the generating function for the Bessel's function $J_{n}(x)$.	4	CO2
Q 4	Derive the series expansion of the error function.	4	CO4
Q 5	Use the separation of variables to convert the partial differential equation into two ordinary differential equation $u_{t t}+u_{x t}+u_{x}=0$	4	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	Consider the integral to find the value $\int_{0}^{1}\left(\frac{x}{1-x^{3}}\right)^{1 / 2} d x$	10	$\mathrm{CO3}$
Q 7	Show that the mapping $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$defined by $\varphi(x)=\sqrt{x}$ is an automorphism.	10	CO1
Q 8	If $P_{n}(x)$ denote the Legendre's polynomial, then show that $\int_{-1}^{1}\left[P_{n}(x)\right]^{2} d x=\frac{2}{2 n+1}$.	10	$\mathrm{CO2}$
Q 9 (a)	Let V be the collection of 2×2 matrices with real entries is a vector space over \mathbb{R}, Then show that $W=\left\{A \in V \mid A^{2}=A\right\}$ is not a subspace of $V(\mathbb{R})$. OR If $\{u, v, w\}$ is a linearly independent subset of a vector space $V(\mathbb{R})$, then show that $\{u, u+v, u+v+w\}$ is also linearly independent set.	5	CO1
Q 9(b)	If V be a vector space over \mathbb{R} with dimension 5 , and U and W are two subspaces of V of dimension 3. Then prove that $U \cap W \neq\{0\}$. OR	5	$\mathrm{CO1}$

	Let V be a vector space of collection of all polynomial of degree n with real coefficients. Then establish the basis set for $V(\mathbb{R})$.		
$\begin{gather*} \text { SECTION-C } \tag{12}\\ \text { (2Qx20M=40 Marks) } \end{gather*}$			
Q10	(a) Establish the relation $\beta(m, n)=\frac{\Gamma(\mathrm{m}) \Gamma(\mathrm{n})}{\Gamma(\mathrm{m}+\mathrm{n})}$ for $m, n>0$. (b)Prove that $\frac{d}{d x}\left[\operatorname{er} f_{c}(\alpha x)\right]=-\frac{2 \alpha}{\sqrt{\pi}} e^{-\alpha^{2} x^{2}}$, all notations have their usual meaning.	20	CO4
Q 11	Use the separation of variables, to find the solution of the Laplace equation $u_{x x}+u_{y y}=0$, under the boundary conditions $\begin{gathered} u(x, 0)=0, \quad(0<x<2) \\ u(x, 1)=0, \quad(0<x<2) \\ u(0, y)=0, \quad(0<y<1) \\ u(2, y)=a \sin 2 \pi y, \quad(0<y<1) \end{gathered}$ OR A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y=k\left(l x-x^{2}\right)$ from which it is released at time $t=0$. Find the displacement of any point on the string at a distance of x from one end at time t.	20	CO 3

