Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Differential Equations Program: B.Sc. Hons. (Physics, Chemistry & Geology) Course Code: MATH 1034G Semester: III Time: 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory and there are internal choices in Q9 and in Q11.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q1.	Find the differential equation of all circles which pass through the origin and whose centers are on the x -axis.	4	CO1	
Q2.	Solve the differential equation, $x(1 + p^2) = 1$, to find its general solution. Here $p \equiv dy/dx$.	4	CO2	
Q3.	Transform $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 2y = x \log x$, $x > 0$, to a differential equation with constant coefficients, and find its complementary function.	4	CO3	
Q4.	Form the partial differential equation by eliminating arbitrary constants a and b from the given relation, $2z = (ax + y)^2 + b$. Also classify it based on its linearity.	4	CO1	
Q5.	Solve the linear partial differential equation using Lagrange's method: $2p + 3q = 1$, where $p \equiv \partial z / \partial x$ and $q \equiv \partial z / \partial y$.	4	CO5	
	SECTION B (4Qx10M= 40 Marks)			
Q6.	Use the method of variation of parameters to find the general solution of $y'' - 2y' + y = e^x \tan x$, $x > 0$.	10	CO3	
Q7.	Find $f(z)$ such that the total differential equation, $\left\{\frac{y^2 + z^2 - x^2}{2x}\right\} dx - y dy + f(z) dz = 0$ is integrable. Hence solve it.	10	CO4	
Q8.	Use Charpit's method to find the complete solution of the given nonlinear partial differential equation, $(p + y)^2 + (q + x)^2 = 1$.	10	CO5	
Q9.	Find the characteristics of $y^2r - x^2t = 0$, where $r = \frac{\partial^2 u}{\partial x^2}$ and $t = \frac{\partial^2 u}{\partial y^2}$. OR Classify the given partial differential equation, $u_{xx} + u_{yy} = u_{zz}$.	10	CO1	

SECTION-C (2Qx20M=40 Marks)				
Q10.	Form the partial differential equations for the following and find their orders: a) $ax^2 + by^2 + cz^2 = 1$, by eliminating the constants <i>a</i> , <i>b</i> , and <i>c</i> . b) $z = yf(x) + xg(y)$ by eliminating the functions <i>f</i> and <i>g</i> .	20	CO1	
Q11.	Find the characteristic curves and derive the canonical form of the second order partial differential equation, $\frac{\partial^2 z}{\partial x^2} = (1+y)^2 \frac{\partial^2 z}{\partial y^2}.$ OR			
	Give the governing equation and appropriate boundary conditions for the one-dimensional Wave equation, assuming both the end points of the string to be fixed and the initial displacement and initial velocity are given by the functions $f(x)$ and $g(x)$, respectively. Solve the problem using separation of variables.	20	CO5	