Name: Enrolment No:			
 Instructions: All questions are compulsory and there are internal choices in Q9 and in Q11.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q1.	Find the differential equation of all circles which pass through the origin and whose centers are on the x-axis.	4	CO1
Q2.	Solve the differential equation, $x\left(1+p^{2}\right)=1$, to find its general solution. Here $p \equiv d y / d x$.	4	CO2
Q3.	Transform $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+2 y=x \log x, \quad x>0$, to a differential equation with constant coefficients, and find its complementary function.	4	$\mathrm{CO3}$
Q4.	Form the partial differential equation by eliminating arbitrary constants a and b from the given relation, $2 z=(a x+y)^{2}+b$. Also classify it based on its linearity.	4	CO1
Q5.	Solve the linear partial differential equation using Lagrange's method: $2 p+3 q=1$, where $p \equiv \partial z / \partial x$ and $q \equiv \partial z / \partial y$.	4	CO5
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q6.	Use the method of variation of parameters to find the general solution of $y^{\prime \prime}-2 y^{\prime}+y=e^{x} \tan x, \quad x>0$.	10	CO3
Q7.	Find $f(z)$ such that the total differential equation, $\left\{\frac{y^{2}+z^{2}-x^{2}}{2 x}\right\} d x-y d y+f(z) d z=0$ is integrable. Hence solve it.	10	CO4
Q8.	Use Charpit's method to find the complete solution of the given nonlinear partial differential equation, $(p+y)^{2}+(q+x)^{2}=1$.	10	CO5
Q9.	Find the characteristics of $y^{2} r-x^{2} t=0$, where $r=\frac{\partial^{2} u}{\partial x^{2}}$ and $t=\frac{\partial^{2} u}{\partial y^{2}}$. OR Classify the given partial differential equation, $u_{x x}+u_{y y}=u_{z z}$.	10	CO1

$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10.	Form the partial differential equations for the following and find their orders: a) $a x^{2}+b y^{2}+c z^{2}=1$, by eliminating the constants a, b, and c. b) $z=y f(x)+x g(y)$ by eliminating the functions f and g.	20	CO1
Q11.	Find the characteristic curves and derive the canonical form of the second order partial differential equation, $\frac{\partial^{2} z}{\partial x^{2}}=(1+y)^{2} \frac{\partial^{2} z}{\partial y^{2}}$ OR Give the governing equation and appropriate boundary conditions for the one-dimensional Wave equation, assuming both the end points of the string to be fixed and the initial displacement and initial velocity are given by the functions $f(x)$ and $g(x)$, respectively. Solve the problem using separation of variables.	20	$\mathrm{CO5}$

