Name: Enrolm	nent No:				
Semest Progra	am: B.Sc. (H) (Mathematics) Ti	me: 03		0	
Instruct 1) Me 2) Att	ctions: Read all the below mentioned instructions carefully and follow them stricention Roll No. at the top of the question paper. The tempt all the parts of a question at one place only. The tempt all the questions from each section. SECTION A	ax. Mai ctly:	rks: 10	0	
S. No.	(5Qx4M=20Marks)	N	larks	СО	
Q 1	Find the values of the constants <i>a</i> , <i>b</i> , <i>c</i> such that the following function is analy $f(z) = x - 2ay + i(bx - cy)$.		4	CO	
Q 3	Prove that $u(x, y) = 2x(1 - y)$ is harmonic and find a function $v(x, y)$ such $f(z) = u + iv$ is analytic.	hat	4	CO1	
Q 4	Using Cauchy's integral formula evaluate $\oint_C \frac{e^z}{(z+1)^4} dz$, where <i>C</i> is the circle $ z = 3$ traversed counterclockwise.	rcle	4	CO2	
Q 2	Use the Argument Principle to evaluate $\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz$, where $f(z) = (z + 1)(z - 1)$ and <i>C</i> is the circle $ z = 2$ traversed counterclockwise.	² +	4	CO2	
Q 5	Locate and classify all the singularities of $f(z) = \frac{z^8 + z^4 + 2}{(z-1)^3(z-2)(3z+2)^2}$.		4	CO3	
	SECTION B (4Qx10M= 40 Marks)				
Q 6	If $f(z) = u + iv$ is an analytic function in a domain D. If any of the following conditions are satisfied, then show that $f(z)$ is constant. (a) $Arg(f(z))$ is constant. (b) $u^2 = v$.		10	COI	
Q 7	 Evaluate \$\int_0^{1+i}(x-y+ix^2)dz\$ (a) Along the real axis from \$z = 0\$ to \$z = 1\$ and then along a line parallel imaginary axis from \$z = 1\$ to \$z = 1 + i\$. (b) Along the imaginary axis from \$z = 0\$ to \$z = i\$ and then along a line parately to real axis from \$z = i\$ to \$z = 1 + i\$. 		10	CO2	

Q 8	Using the residue theorem evaluate $\frac{1}{2\pi i} \oint_C \frac{e^{2z}}{z^2(z^2+2z+2)} dz$ where C is the circle $ z = 3$ traversed counterclockwise.	10	CO4		
Q 9			CO3		
	Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in the Laurent series valid for (a) $0 < z+1 < 2$	10			
	(b) $ z < 1$. OR				
	Discuss the singularities of the function $f(z) = \frac{e^z}{z^2(1-\cos z)}$ and classify them.				
SECTION-C (2Qx20M=40 Marks)					
Q 10	(a) If $f(z)$ has a pole of order k at $z = a$ then prove that residue (a_{-1}) is given				
Q IU					
	by $a_{-1} = \frac{1}{(k-1)!} \lim_{z \to a} \frac{d^{k-1}}{dz^{k-1}} (z-a)^k f(z).$				
	(b) Find the residue of $f(z) = \frac{1}{(z-2)(z-3)(z-4)}$ at all its poles in the	20	CO4		
		20	04		
	complex plane \mathbb{C} and evaluate $\oint_C f(z) dz$, where C is $ z - i = \pi$				
	traversed counterclockwise.				
Q 11	(a) If $f(z)$ is analytic inside a circle \mathbb{C} with center a , then for all z inside \mathbb{C}				
	then show that $f(z) = f(a) + (z - a)f'(a) + \frac{(z-a)^2}{2!}f''(a) + \frac{(z-a)^2}{2!}f''(a)$				
	21				
	$+\frac{(z-a)^3}{3!}f'''(a)+\cdots$				
	(b) Expand $f(z) = \cos z$ in Taylor series up to three terms about $z = \frac{\pi}{4}$.				
	OR	20	CO3		
	Let $f(z) = \ln (1 + z)$ then				
	(a) Expand $f(z)$ in a Taylor series about $z = 0$.				
	(b) Determine the region of convergence for the series in (a).				
	(c) Expand $\ln\left(\frac{1+z}{1-z}\right)$ in a Taylor series about $z = 0$.				