Name: Enrolment No:			
Course Semest Progra Course Instruc 1) Me 2) Att 3) Att	UPES End Semester Examination, December 2023 : Complex Analysis r: III m: B.Sc. (H) (Mathematics) Code: MATH - 2049 tions: Read all the below mentioned instructions carefully and follow them strictly: ntion Roll No. at the top of the question paper. mpt all the parts of a question at one place only. mpt all the questions from each section.	3 hrs. arks: 1	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Find the values of the constants a, b, c such that the following function is analytic: $f(z)=x-2 a y+i(b x-c y)$.	4	CO1
Q 3	Prove that $u(x, y)=2 x(1-y)$ is harmonic and find a function $v(x, y)$ such that $f(z)=u+i v$ is analytic.	4	CO1
Q 4	Using Cauchy's integral formula evaluate $\oint_{C} \frac{e^{z}}{(z+1)^{4}} d z$, where C is the circle $\|z\|=3$ traversed counterclockwise.	4	CO2
Q 2	Use the Argument Principle to evaluate $\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} d z$, where $f(z)=\left(z^{2}+\right.$ 1) $(z-1)$ and C is the circle $\|z\|=2$ traversed counterclockwise.	4	CO2
Q 5	Locate and classify all the singularities of $f(z)=\frac{z^{8}+z^{4}+2}{(z-1)^{3}(z-2)(3 z+2)^{2}}$.	4	CO3
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	If $f(z)=u+i v$ is an analytic function in a domain D . If any of the following conditions are satisfied, then show that $f(z)$ is constant. (a) $\operatorname{Arg}(f(z))$ is constant. (b) $u^{2}=v$.	10	CO1
Q 7	Evaluate $\int_{0}^{1+i}\left(x-y+i x^{2}\right) d z$ (a) Along the real axis from $z=0$ to $z=1$ and then along a line parallel to imaginary axis from $z=1$ to $z=1+i$. (b) Along the imaginary axis from $z=0$ to $z=i$ and then along a line parallel to real axis from $z=i$ to $z=1+i$.	10	CO2

Q 8	Using the residue theorem evaluate $\frac{1}{2 \pi i} \oint_{C} \frac{e^{2 z}}{z^{2}\left(z^{2}+2 z+2\right)} d z$ where C is the circle $\|z\|=3$ traversed counterclockwise.	10	CO 4
Q 9	Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in the Laurent series valid for (a) $0<\|z+1\|<2$ (b) $\|z\|<1$. OR Discuss the singularities of the function $f(z)=\frac{e^{z}}{z^{2}(1-\cos z)}$ and classify them.	10	CO 3
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	(a) If $f(z)$ has a pole of order k at $z=a$ then prove that residue $\left(a_{-1}\right)$ is given by $a_{-1}=\frac{1}{(k-1)!} \lim _{z \rightarrow a} \frac{d^{k-1}}{d z^{k-1}}(z-a)^{k} f(z)$. (b) Find the residue of $f(z)=\frac{1}{(z-2)(z-3)(z-4)}$ at all its poles in the complex plane \mathbb{C} and evaluate $\oint_{C} f(z) d z$, where C is $\|z-i\|=\pi$ traversed counterclockwise.	20	CO4
Q 11	(a) If $f(z)$ is analytic inside a circle \mathbb{C} with center a, then for all z inside \mathbb{C} then show that $f(z)=f(a)+(z-a) f^{\prime}(a)+\frac{(z-a)^{2}}{2!} f^{\prime \prime}(a)+$ $+\frac{(z-a)^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots$ (b) Expand $f(z)=\cos z$ in Taylor series up to three terms about $z=\frac{\pi}{4}$. OR Let $f(z)=\ln (1+z)$ then (a) Expand $f(z)$ in a Taylor series about $z=0$. (b) Determine the region of convergence for the series in (a). (c) Expand $\ln \left(\frac{1+z}{1-z}\right)$ in a Taylor series about $z=0$.	20	CO 3

