| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| Course: Analytical Geometry Semester: <br> Program: B.Sc. (H) Mathematics Time $:$ <br> Course Code: MATH 2047 Max. Marks: <br> Instructions: Read all the below mentioned instructions carefully and follow them strictly: <br> 1) Mention Roll No. at the top of the question paper. <br> 2) Attempt all the parts of a question at one place only. |  |  |  |
| $\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$ |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | Prove that the centres of the circles $x^{2}+y^{2}+4 y+3=0, x^{2}+y^{2}+$ $6 x+8 y-17=0$ and $x^{2}+y^{2}-30 x-16 y-42=0$ are collinear. | 4 | CO1 |
| Q 2 | Find the equation of the tangent and normal at $t$ on the parabola $x^{2}=4 a y$. | 4 | CO2 |
| Q 3 | Show that the point $(8,9)$ lies on the circle $x^{2}+y^{2}-10 x-12 y+43=$ 0 and find the other end of the diameter through ( 8,9 ). | 4 | $\mathrm{CO3}$ |
| Q 4 | Derive the equation of tangent at ( $\alpha, \beta$ ) to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. | 4 | CO3 |
| Q 5 | Find the equation of the hyperbola whose focus is $(2,2)$, eccentricity $\frac{3}{2}$ and directrix $3 x-4 y=1$. | 4 | CO2 |
| $\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$ |  |  |  |
| Q 6 | Find the equations of the right circular cylinder of radius 3 with equations of axis $\frac{x-1}{2}=\frac{y-3}{2}=\frac{z-5}{-1}$. | 10 | $\mathrm{CO4}$ |
| Q 7 | Obtain the equation to the tangent planes to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ which are parallel to the plane $l x+m y+n z=0$. | 10 | $\mathrm{CO3}$ |
| Q 8 | Show that the plane $2 x-2 y+z+12=0$ touches the conic $x^{2}+y^{2}+$ $z^{2}-2 x-4 y+2 z-3=0$ and find the point of contact. | 10 | CO2 |
| Q 9 | The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ cuts the coordinate axes in $\mathrm{A}, \mathrm{B}$ and C . Find the equation of the sphere passing through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and O . Also find its center and radius. <br> OR | 10 | CO1 |


|  | The equations to $A B$ are $\frac{x}{1}=\frac{y}{-1}=\frac{z}{1}$ through a point $P(1,0,-1), P N$ is drawn perpendicular to $A B$, and $P Q$ is drawn parallel to the plane $3 x+$ $4 y+5 z=0$ to meet $A B$ in $Q$. Find the equations of $P N$ and $P Q$. |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$ |  |  |  |
| Q 10 | Find the angle between the lines of section of the plane $3 x+y+5 z=0$ and the cone $6 y z-2 z x+5 x y=0$. | 20 | CO 4 |
| Q 11 | The rods whose lengths are $a$ and $b$ slide along the coordinate axes in such a way that their extremities are concyclic. Find the locus of the center of the circle. <br> OR <br> A common tangent is drawn to the circle $x^{2}+y^{2}=r^{2}$ and the parabola $y^{2}=4 a x$. Show that the angle $\theta$ which it makes with the axis of the parabola is given by $\tan ^{2} \theta=\frac{\sqrt{r^{2}+4 a^{2}}-r}{2 r}$. | 20 | CO4 |

