Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2023

Course: Analytical Geometry Program: B.Sc. (H) Mathematics Course Code: MATH 2047

Semester: III Time : 03 hrs. Max. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1) Mention Roll No. at the top of the question paper.
- 2) Attempt all the parts of a question at one place only.

SECTION A (50x4M=20Marks)

	(5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	Prove that the centres of the circles $x^2 + y^2 + 4y + 3 = 0$, $x^2 + y^2 + 6x + 8y - 17 = 0$ and $x^2 + y^2 - 30x - 16y - 42 = 0$ are collinear.	4	C01
Q 2	Find the equation of the tangent and normal at <i>t</i> on the parabola $x^2 = 4ay$.	4	CO2
Q 3	Show that the point (8, 9) lies on the circle $x^2 + y^2 - 10x - 12y + 43 = 0$ and find the other end of the diameter through (8, 9).	4	CO3
Q 4	Derive the equation of tangent at (α, β) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	4	CO3
Q 5	Find the equation of the hyperbola whose focus is (2, 2), eccentricity $\frac{3}{2}$ and directrix $3x - 4y = 1$.	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Find the equations of the right circular cylinder of radius 3 with equations of axis $\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}$.	10	CO4
Q 7	Obtain the equation to the tangent planes to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ which are parallel to the plane $lx + my + nz = 0$.	10	CO3
Q 8	Show that the plane $2x - 2y + z + 12 = 0$ touches the conic $x^2 + y^2 + z^2 - 2x - 4y + 2z - 3 = 0$ and find the point of contact.	10	CO2
Q 9	The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ cuts the coordinate axes in A, B and C. Find the equation of the sphere passing through A, B, C and O. Also find its center and radius. OR	10	CO1

	The equations to <i>AB</i> are $\frac{x}{1} = \frac{y}{-1} = \frac{z}{1}$ through a point <i>P</i> (1, 0, -1), <i>PN</i> is drawn perpendicular to <i>AB</i> , and <i>PQ</i> is drawn parallel to the plane $3x + 4y + 5z = 0$ to meet <i>AB</i> in <i>Q</i> . Find the equations of <i>PN</i> and <i>PQ</i> .				
	SECTION-C				
(2Qx20M=40 Marks)					
Q 10	Find the angle between the lines of section of the plane $3x + y + 5z = 0$ and the cone $6yz - 2zx + 5xy = 0$.	20	CO4		
	The rods whose lengths are a and b slide along the coordinate axes in such a way that their extremities are concyclic. Find the locus of the center of the circle.				
	OR				
Q 11	A common tangent is drawn to the circle $x^2 + y^2 = r^2$ and the parabola $y^2 = 4ax$. Show that the angle θ which it makes with the axis of the parabola is given by $tan^2\theta = \frac{\sqrt{r^2 + 4a^2} - r}{2r}$.	20	CO4		