Name:					
Enrolment No:					
End-Semester Examination, December 2023					
Program Name: B.Sc (H) Chemistry, Mathematics & Geology					
Semeste	er : III				
Course	Name : Elements of Modern Physics	Time : 3 hr	'S.		
Course	Course Code : PHYS 2009G Max. Marks: 100				
Nos. of page(s): 02					
Instructio	ions:				
• 1	All questions are compulsory.				
• 5	Scientific calculators can be used for calculations.				
	Section A 4 marks x 5 =	20 Marks			
S. No.		Marks	COs		
Q 1	Find the maximum frequency, and minimum wavelength of X-rays produced	•	G A A		
	30 keV.	4	CO1		
Q 2	For a non-dispersive medium, prove that the phase velocity is equal to the	group			
Q 2	velocity i.e. $v_a = v_p$.	4	CO2		
	velocity i.e. $v_g - v_p$.	4	02		
Q 3	Calculate the de-Broglie wavelength associated with a proton moving	with a			
	velocity equal to $\frac{1}{20}$ th of the velocity of light.	4	CO1		
	velocity equal to $_{20}$ and the velocity of light.	-	001		
Q 4	Calculate the uncertainty in the velocity of an electron that is confined in a 1	0A°			
X ·	box.	4	CO3		
Q 5	Derive the Energy-Time Uncertainty Principle from Position-Mom	entum			
-	Uncertainty	4	CO2		
	Section B 10 Marks x 4 =40 I	Marks			
Q 6	An X-ray photon is found to have its wavelength doubled on being scattered the	nrough			
X °	90° Find the wavelength and energy of the incident photon.	10 III	CO1		
	yo That the wavelength and energy of the mendent photon.	10	001		
Q 7	Write the physical significance of wave function ψ . Deduce Schrodinger	· time-			
-	dependent wave equation.	10	CO3		
			2.50		
Q 8	Write the Rutherford's atomic model. Explain the two drawbacks of Ruther	rford's			
₹Ŭ	atomic model. Calculate the Energy as per Bohr model				
		10	CO2		

Q. 9	An X-ray beam of wavelength 0.97Å is obtained in the third order after reflection at 60° from the crystal plane. Another beam is obtained in the first order after reflection at 30° from the same crystal plane. Calculate the wavelength of the second X-ray beam. OR Write the Bragg's law with its physical significance. How this law can be useful in Determination of the crystal structure.		CO5
	Section C 20 Marks x 2= 40 Marks		
Q 10	Explain Bethe-Weizacker Semi-empirical Mass Formula (SEMF). Derive a formula for the atomic number of the most stable isotope isobar of a given A and use it to find the most stable isobar of $A = 25$.		CO4
Q 11	Explain the law of radioactive decay. Discuss the half-life. According to measurements by Rutherford and Geiger, one gram of radium emits 3.7×10^{10} alpha particles in one second. Estimate the half-life of radium. OR What is Bragg's law for diffraction of X-rays by crystal? Derive it. The glancing angles of reflection for K_a , X-rays from palladium are 5.4° from (100) planes 7.6° from (110) planes and 9.4 from (111) planes. From the above data, find the cubic lattice structure of the palladium crystal.		CO5
