Name:

Enrolment No:

 \mathbf{CO}

UPES

End Semester Examination, December 2023

Course: Physical Chemistry III
Program: BSc (H) Chemistry
Course Code: CHEM 2022

Semester: III
Time : 03 hrs.
Max. Marks: 100

Instructions: All questions are compulsory.

SECTION A (5Qx4M=20Marks) S. No. Marks Q 1 How many phases and components are present in the following system?

Q 1	How many phases and components are present in the following system? (a) Mixture of molten lead, tin and bismuth (b) Two ice cubes floating on water in a closed container in the presence of water vapour.	4	CO1
Q 2	What is the effect of temperature and pressure on the adsorption of a gas on a solid?	4	CO1
Q 3	A particular mass of charcoal absorbs a large volume of ammonia than of hydrogen at a given temperature. Explain?	4	CO2
Q 4	Discuss in detail the various applications of adsorption in industry and in everyday life.	4	CO2
Q 5	Calculate the degree of freedom for the following: (a) A mixture of nitrogen and oxygen gases contained in a vessel. (b) Rhombic sulphur in equilibrium with monoclinic sulphur.	4	CO1
	SECTION B		
	(4Qx10M = 40 Marks)		
Q 6	Draw a labelled phase diagram of the sulphur system and discuss its salient features.	10	CO2
Q 7	Define the term: ionic mobility. Derive the relation between ionic mobility and molar ionic conductance.	10	CO1
Q 8	How is the standard electrode potential of an electrode measured using (a) standard hydrogen electrode, and (b) calomel electrode, as reference electrode? Explain with suitable examples.	10	CO1
Q 9	If ionic conductance for H ⁺ and OH ⁻ ions are 394.8 and 198.5 ohm ⁻¹ cm ² respectively at 25 ⁰ C and if the specific conductance of water at this temperature is 5.54 x 10 ⁻⁸ ohm ⁻¹ cm ² . Calculate the ionic product of water.		
	Or	10	CO2

Describe Nernst distribution law: its derivation and applications.

SECTION-C (2Qx20M=40 Marks)				
Q 10	(i) Water boils at 100 0 C at a pressure of 1 atm. Calculate the vapor pressure of water at 90 0 C. The heat of vaporization of water is 9.80 kcal mol ⁻¹ .			
	Or			
	Describe a typical galvanic cell and show how the chemical energy is converted to electrical energy. What is the relation between free energy and EMF of a cell?	10 + 10	CO3	
	(ii) A dilute solution of AgNO ₃ has an equivalent conductivity of 115.3 ohm ⁻¹ cm ² eq ⁻¹ and the transport number of silver ion is 0.47. Calculate the ionic conductance and ionic mobilities of silver and nitrate ions.			
Q 11	(i) State the phase rule. Explain the terms used. Apply this rule to the lead-silver system.			
	(ii) A cell uses Zn^{2+} I Zn and Ag^+ I Ag electrodes. Write the cell representation, half-cell reactions and net cell reaction. Calculate the EMF of the cell. Given E^0 Zn^{2+} I $Zn = -0.76$ V and E^0 Ag^+ I $Ag = 0.8$ V.	10 + 10	CO3	