Name:

Enrolment No:

UPES **End Semester Examination, December 2023 Course: Engineering System Components** Semester: I **Program: M.Tech (Robotics Engineering)** Time: 03 hrs. **Course Code: ECEG7036** Max. Marks: 100 Instructions: Assume any data if missing. SECTION A (5Qx4M=20Marks) S. No. CO Marks Write the name and application of each device shown below. Q 1 $\overset{\mathbf{I}_{A}}{\longrightarrow} \overset{\mathbf{G}}{\longrightarrow} \overset{\mathbf{G}}{\longleftarrow} \overset{\mathbf{G}}{\longleftrightarrow} \overset{\mathbf{$ **CO3** 4 $A \rightarrow A$ - V.F -Q2 Elucidate the constructional features of lead acid batteries with the help of chemical equations. 4 **CO1** A 200V DC shunt motor runs at 600 rpm when the armature current is Q3 30A. Calculate the speed if the torque is doubled. Given that $Ra = 0.18\Omega$. 4 **CO4** Is there any significant difference between a microprocessor and a PLC? Q4 4 CO₂ Q5 What is PID control? Explain in brief the benefits of P, I, D controller individually. 4 CO₂ **SECTION B** (4Qx10M= 40 Marks) Q6 Draw the block diagram of any one microcontroller system used in autonomous robots. Explain the functions of each sub-block in brief. 10 **CO2** Design a 3-bit up counter by using JK Flip-Flops and discuss various Q7 applications of these counters. 10 **CO3**

Q8	Illustrate different methods of speed control for DC motors. Explain with the help of equations in detail.	10	CO4
Q9	Differentiate between sensors and transducers? Name two sensors and two transducers to measure each of the following physical quantities: a) Temperature b) Pressure c) Liquid level d) Flow	10	CO1
	SECTION-C (2Qx20M=40 Marks)		
Q10	Identify the circuit shown below and explain the working principle & circuit with suitable waveforms in detail.	20	CO4
Q11	Show that the controlled half-wave rectifier and full wave rectifier with a resistive load have the power factor of $pf_{HW} = \sqrt{\frac{1}{2} - \frac{\alpha}{2\pi} + \frac{\sin 2\alpha}{4\pi}} \text{ and } pf_{FW} = \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin 2\alpha}{2\pi}}$ Also, explain the significance of power factor in rectifier circuits. OR The three-phase alternating voltage is given by V=415×sin (314t- α). Calculate a) frequency b) line voltage c) phase voltage d) phase current for a load of 300W and at α =0 e) phase current for a load of 300W and 400VAR at α =0 Also draw the balance supply system for three phases mentioning the values of phase angle for each phase.	20	CO3