Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Linear Algebra Program: B.Sc. (H) Mathematics Course Code: MATH1057 Semester: I Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Find the rank of the matrix $A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 2 \end{bmatrix}$.	4	CO1	
Q 2	Define Internal and external composition of vector space.	4	CO2	
Q 3	Show that the vectors $(1,2,-2), (-1,3,0), (0,-2,1)$ are linearly independent vectors.	4	CO2	
Q 4	Prove that the intersection of two subspaces of a vector space is also a subspace.	4	CO2	
Q 5	Let \overline{F} be the field of the complex numbers and let T be the function from R^3 to R^3 defined by $T(a_1, a_2, a_3) = (a_1 - a_2 + 2a_3, 2a_1 + a_2 - a_3, -a_1 - 2a_2)$ then show that T is a linear transformation.	4	CO3	
	SECTION B			
	(4Qx10M= 40 Marks)			
Q 6	Show that the set of numbers of the form $a + b\sqrt{2}$ where <i>a</i> and <i>b</i> are rational numbers, is a field with respect to addition and multiplication.	10	CO2	
Q 7	Define the linear sum of two subspaces. Prove that if W_1 and W_2 are subspaces of a vector space $V(F)$ then $W_1 + W_2$ is also a subspace of $V(F)$.	10	CO2	
Q 8	Let <i>U</i> and <i>V</i> be two finite dimensional vector spaces over the same field <i>F</i> and let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be ordered basis for <i>U</i> and let $\{\beta_1, \beta_2, \dots, \beta_n\}$ be ordered basis for <i>V</i> then prove that there is precisely one linear transformation $T: U \to V$ such that $T(\alpha_j) = \beta_j, j = 1, 2, 3 \dots n$.	10	CO3	

Q 9	Show that the homogenous system of equations: $x + y \cos \gamma + z \cos \beta = 0,$ $x \cos \gamma + y + z \cos \alpha = 0,$ $x \cos \beta + y \cos \alpha + z = 0$ has non-trivial solution if $\alpha + \beta + \gamma = 0.$ OR Find values of λ for which the following system of equations is consistent and non-trivial solutions. Solve equations for all such values of λ . $(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0$ $(\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0$ $2x + (3\lambda + 1)y - 3(\lambda - 1)z = 0$	10	CO1	
SECTION-C (2Qx20M=40 Marks)				
Q 10	Find the modal matrix P such that $P^{-1}AP$ is diagonal matrix, where $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$ OR State Cayley Hamilton theorem. Verify it for matrix $A = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix}$. Hence find A^{-1} .	20	CO1	
Q 11	Let <i>U</i> and <i>V</i> be the vector spaces over the same field <i>F</i> and let <i>T</i> be a linear transformation from <i>U</i> to <i>V</i> where <i>U</i> is finite dimensional then prove that $rank(T) + nullity(T) = \dim(U)$.	20	CO3	