Name: Enrolment No:			
Course: Linear Algebra Semester: I Program: B.Sc. (H) Mathematics Time $: \mathbf{0 3}$ hrs. Course Code: MATH1057 Max. Marks: $\mathbf{1 0 0}$ Instructions: Attempt all questions.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Find the rank of the matrix $A=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 2\end{array}\right]$.	4	CO1
Q 2	Define Internal and external composition of vector space.	4	CO2
Q 3	Show that the vectors $(1,2,-2),(-1,3,0),(0,-2,1)$ are linearly independent vectors.	4	CO2
Q 4	Prove that the intersection of two subspaces of a vector space is also a subspace.	4	CO2
Q 5	Let F be the field of the complex numbers and let T be the function from R^{3} to R^{3} defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}+2 a_{3}, 2 a_{1}+a_{2}-a_{3},-a_{1}-2 a_{2}\right)$ then show that T is a linear transformation.	4	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	Show that the set of numbers of the form $a+b \sqrt{2}$ where a and b are rational numbers, is a field with respect to addition and multiplication.	10	CO2
Q 7	Define the linear sum of two subspaces. Prove that if W_{1} and W_{2} are subspaces of a vector space $V(F)$ then $W_{1}+W_{2}$ is also a subspace of $V(F)$.	10	CO2
Q 8	Let U and V be two finite dimensional vector spaces over the same field F and let $\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots \ldots \alpha_{n}\right\}$ be ordered basis for U and let $\left\{\beta_{1}, \beta_{2}, \ldots \ldots \ldots . \beta_{n}\right\}$ be ordered basis for V then prove that there is precisely one linear transformation $T: U \rightarrow V$ such that $T\left(\alpha_{j}\right)=\beta_{j}, j=1,2,3 \ldots \ldots n$.	10	CO3

Q 9	Show that the homogenous system of equations: $\begin{aligned} & x+y \cos \gamma+z \cos \beta=0 \\ & x \cos \gamma+y+z \cos \alpha=0 \\ & x \cos \beta+y \cos \alpha+z=0 \text { has non-trivial solution if } \alpha+\beta+\gamma=0 \end{aligned}$ OR Find values of λ for which the following system of equations is consistent and non-trivial solutions. Solve equations for all such values of λ. $\begin{gathered} (\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0 \\ (\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0 \\ 2 x+(3 \lambda+1) y-3(\lambda-1) z=0 \end{gathered}$	10	CO1
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Find the modal matrix P such that $P^{-1} A P$ is diagonal matrix, where $A=\left[\begin{array}{ccc} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{array}\right]$ OR State Cayley Hamilton theorem. Verify it for matrix $A=\left[\begin{array}{ccc}4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1\end{array}\right]$. Hence find A^{-1}.	20	CO1
Q 11	Let U and V be the vector spaces over the same field F and let T be a linear transformation from U to V where U is finite dimensional then prove that $\operatorname{rank}(T)+$ nullity $(T)=\operatorname{dim}(U)$.	20	CO 3

