Name:

Enrolment No:

Semester : 1st

Max. Marks: 100

: 3 hrs.

Time

UPES

End Semester Examination, December 2023

Program Name: M. Tech RE

Course Name: Wind and Tidal energy

Course Code: EPEC7071

Nos. of page(s):

SECTION A (50x4M=20Marks)

	(5Qx4M=20Marks)		
S. No.		Marks	СО
Q	Statement of question		CO1
Q1	List two characteristics of wind related to WECS.	4	CO1
Q2	Enumerate the environmental impacts associated with tidal power generation?	4	CO2
Q3	Derive an expression of power extracted from the wind turbine.	4	CO3
Q4	Discus the scenario of tidal power system sites in India.	4	CO2
Q5	Calculate the wind load on the wind-facing wall of the building using the following details: The convenience store wind-facing wall dimensions are: 12' tall, 20' long. How much force will be exerted on the wind-facing wall of the building by the wind?	4	CO3
	SECTION B		
	(4Qx10M=40 Marks)		
Q6	Explain the limitations of the power extracted by a wind turbine working on aerodynamic principle.	10	CO2
Q7	Briefly describe various control mechanisms in wind turbines.	10	CO1
Q8	What role do government policies play in the development and expansion of wind energy?		
	Or A wind turbine has a rated capacity of 2 megawatts (MW) and operates at 30% capacity factor. Calculate the average power output of this turbine.	10	CO3
Q9	A horizontal axis wind turbine has a diameter of 6 m. When the wind speed unaffected by the turbine is 10 m/s, the turbine rotates at 300 rpm and produces 5 kW of mechanical power. Find the tip-speed ratio and the power coefficient.	10	CO3

SECTION-C (2Qx20M=40 Marks)				
Q10	Briefly Describe various technologies associated with tidal energy. Or A wind farm consists of five wind turbines. Three turbines have two blades each, and the remaining two turbines have three blades each. If the two-blade turbines have a rotor diameter of 60 meters and the three-blade turbines have a rotor diameter of 80 meters, calculate the total area covered by the blades in the wind farm	20	CO2	
Q11	A wind turbine with a rotor diameter of 55 m is rated at 1 MW at a hub height wind speed of 14 m/s. It has a cut-in speed of 4 m/s and a cut-out speed of 25 m/s. Assume that this machine is located at a site where the mean wind speed is 10 m/s and that a Rayleigh wind speed distribution can be used. Calculate the following: (a) The number of hours per year that the wind is below the cut-in speed. (b) The number of hours per year that the machine will be shut down due to wind speeds above the cut-out velocity. (c) The energy production (kWh/year) when the wind turbine is running at rated power. Or How do advancements in technology improve the power efficiency of wind turbines?	20	CO1	