Name:			
	ent No:		
	UPES		
End Semester Examination, December 2023 Programme Name: M Tech Renewable Course Name : Optimization of Renewable Energy Systems Course Code : EPEC7056 Nos. of page(s) : 2 Instructions: Assume the values of parameters logically where necessary		Semester : I Time : 3 hrs. Max. Marks: 100	
	SECTION A (4Qx5M=20Marks)		
S. No.		Marks	СО
Q1	Define Energy and watt. What is Ohm's law and describe the associated terms?	2 + 3 = 5	CO1
Q2	What is a fuel cell? Why is it termed as "fuel cell"?	2+3=5	CO1
Q3	Discuss the principles of using semiconductors for solar cells.	5	C01
Q4	Explain the cut-in and cut-out wind velocity with respect to the operation of wind turbine	5	CO1
	SECTION B		
05	(4Qx10M= 40 Marks) Discuss the anode and cathode side reactions for		
Q5	 H₂/O₂ fuel cell Molten carbonate fuel cell (a) When fuel is H₂ (b) When fuel is CO 	5+5= 10	CO2
Q6	Calculate the power converted from a wind machine at wind speed 12 m/s, air density 1.23 kg/m ³ , and power coefficient is 0.4. The blade length of wind machine is about 52 m.	10	CO2
Q7	Find all local optima of the function. $f(x) = x^{\frac{1}{3}}(x-1)$	10	CO3
Q8	Assuming that the average daily solar radiation at a particular place is 600 W/m^2 . Calculate the size of array with 30% efficient solar cells to produce 2 kW power.	10	CO3
	SECTION-C (2Qx20M=40 Marks)		
Q9	Air is to be compressed from 1 to 10 atm. pressure in a two-stage compressor. To increase the compression efficiency, the compressed air from the first stage of compression is cooled (it is passed through a heat exchanger) before entering the second stage of compression. For	20	CO4

	isentropic compression of air, the total work input to a compressor (W) can be represented by $W = c_p T_1 \left[\left(\frac{p_2}{p_1} \right)^{(k-1)/k} + \left(\frac{p_3}{p_2} \right)^{(k-1)/k} - 2 \right]$		
	where the specific heat of air at constant pressure is $c_p = 1.006 \text{ kJ/kg}$. K, $k = 1.4$ is the ratio of specific heat at constant pressure to specific heat at constant volume of air, and the entering gas temperature $T_1 = 300$ K. Find the intermediate pressure p_2 at which cooling is required to minimize the work input to the compressor. Also, calculate the minimum work required to operate the compressor. Use search method with accelerated step size. Starting point = 1.0 (as the inlet pressure is 1 atm.) and initial step size = 0.05.		
Q10	Apply the fundamentals of kinetic energy to prove Betz power coefficient $= 0.593$ in case of wind turbine.	20	CO4