Name:

Enrolment No:

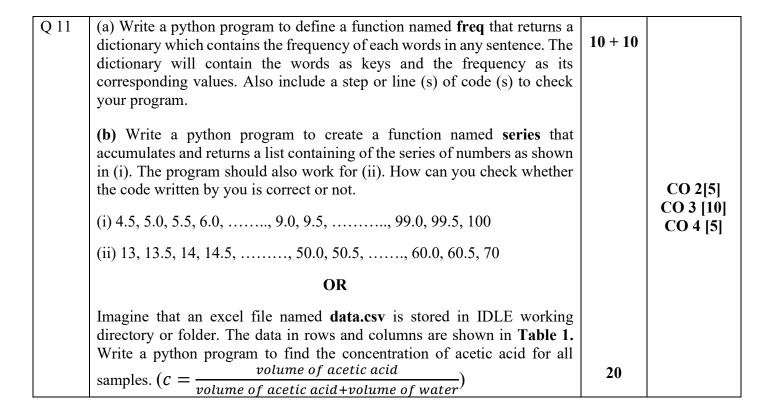
UPES

End Semester Examination, December 2023

Course: Programming in petroleum Engineering Semester: I

Program: M. Tech (Petroleum Engineering)

Course Code: PEGI7023


Time : 03 hrs

Max. Marks: 100

Instructions: (a) This is a closed book exam. Possessing a mobile phone and any other communication devices during the exam is strictly prohibited.

	during the exam is strictly prohibited.		umeation
	SECTION A (5Q x 4M = 20 Marks)		
S. No.	Statement (s) of the question (s)	Marks	CO
Q 1	Write a python code to (a) define a list with named lst containing the following four elements below: 90 3.14 crude oil sour water (b) define or create an object named sec that belongs to the class time	2 + 2	CO1
Q 2	Write a python code to (a) define a dictionary named water that can store the following properties of water with density (1000), viscosity (0.01) and specific heat (4.186). (b) Modify the viscosity to 0.05	2 + 2	CO1
Q 3	 (a) Write a python code to create a complex number with 2 and 5 as the real part and imaginary part, respectively (b) Create a set data type that contains the three elements 4 9.8 random 		CO2 [2 M] CO3 [2 M]
Q 4	Write a python program to (a) define a user define function named sqr that returns the square of an input number. (b) print the following words in its exact form as output containing all alphabets and special characters. "python's \n code"		CO1
Q 5	Write a python code to create (a) identity matrix (100 rows, 100 columns), and (b) a matrix (1 row, 100 columns) that contains only zero.		CO1[2] CO2[1] CO3[1]
	SECTION B $(4Q \times 10M = 40 \text{ Marks})$		
Q 6	 (a) Show all the necessary steps and determine the binary representation of the number 41 (b) print(~9) For the python code above, the output was found to be -10. Use all detailed necessary steps to explain the reason. 	4+6	CO2

Q 7	(a) Write a python program to create a ma 1 2 3 (elements of 1 st row), 4 5 6 7 8 9 (elements of 3 rd row). (b) Use slicing, to create a variable named elements of mat1 that are bold and italics.	(elements of 2 nd row) and	10	CO2 [5 M] CO3 [5 M]
Q 8	Write a python program to create three numbers of classes, named as A, B, and C. B contains a method to find the sum of number series (such as 1, 2, 3, 4, 5, 6, and many more). While, A contains method to find the factorial of numbers. The class C do not have any methods defined. \[\frac{1+2+3+4+5+6+7+8+9+10}{10!} \] Write a python program to evaluate the above expression only using the object that belongs to class C. Use appropriate names of your choice.			CO2 [5 M] CO3 [5 M]
Q 9	Write a python code to print the following pattern of cone exactly as shown in Fig. 1 . OR Define a function named sorting that takes a list as input parameter and returns two lists as an output parameter. One list containing only even numbers and other list only contains odd numbers.		10	CO 3 [6] CO 4 [4]
	SECTION C (2	$Q \times 20M = 40 \text{ Marks})$		
Q 10	Analyze the python codes below to predic (i) print(5 // 3) (ii) print(5 % 3) (iii) str1 = "python's code" print(str1[6]) (iv) print(str1[1:4]) (v) water = [] water.append("boil") print(water) (vi) word = "ab" for i in word: print("welcome {}".format(i)) (vii) print(len("python")) (vii) a, b, c, d = 1, 2, 3, 4 print(d > c**b) (viii) print(c > b or a > d) (ix) print(5 in [7.675, "float", 5]) (x) print(type({1, 2, "hello"}))	t the outputs: (2 marks each) Output:	20	CO 2[5] CO 3 [10] CO 4 [5]

Table 1: Sample of acetic acid and water mixed at different volume ratios.

Sample	acetic acid (ml)	water (ml)
A	1	5
В	2	4
С	3	3
D	4	2
Е	5	1

Fig. 1: Triangular pattern

CO

con

cone