Name: Enrolme	ent No:				
UPES End Semester Examination, December 2023 Course: Differential Calculus Semester : I Program: B. Sc. (H) Mathematics Time : 03 hrs. Course Code: MATH1044 Max. Marks: 100 Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (Each carrying 10 marks) and attempt all questions from Section C (each carrying 20 marks). Question 9 and 10 have internal choice. UPES					
	SECTION A (5Qx4M=20Marks)				
S. No.			Marks	СО	
Q 1	If $y = x^2 e^{2x}$, then find the n^{th} derivative	e of y at $x = 0$.	4	CO1	
Q 2	Find the asymptotes of the curve $f(x, y) = x^2y^2 - y$ which are parallel to the axes.	$^{2}-2=0$	4	CO2	
Q 3	Compute the value of $\left[\frac{1}{\frac{\partial f}{\partial x}} + \frac{1}{\frac{\partial f}{\partial y}}\right]$ at the point (1,2) where $f(x,y) = x^3y - xy^3$.		4	CO3	
Q 4	Evaluate $\lim_{(x,y)\to(1,2)} \frac{x^2+7y}{x+y^2}$.		4	CO3	
Q 5	Check whether the following functions $u(x, y) = \frac{x+y}{1-xy}, v(x, y) =$ are functionally dependent or not.	$\tan^{-1}x + \tan^{-1}y$	4	CO4	
SECTION B (4Qx10M= 40 Marks)					
Q 6	Test the differentiability of the following $f(x) = x \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}},$ $= 0,$	when $x \neq 0$	10	CO1	
Q 7	Trace the curve $y^2(2a - x) = x^3(a > 0)$).	10	CO2	
Q 8	State and prove Euler's theorem for homogeneous function $f(x, y)$.	partial differentiation of a	10	CO3	

Q 9	Expand $f(x, y) = y^x$ about (1, 1) up to second degree terms and hence evaluate $(1.02)^{1.03}$.		CO4	
	OR	10		
	Discuss the maxima and minima of the function			
	$f(x, y) = x^3 + 3xy^2 - 3x^2 - 3y^2 + 7.$			
SECTION-C (2Qx20M=40 Marks)				
Q 10	If $x^x y^y z^z = c$, show that at $x = y = z$,			
	(i) $\frac{\partial^2 z}{\partial x \partial y} = -(x \log ex)^{-1}$ (ii) $\frac{\partial^2 z}{\partial x^2} - 2xy \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = \frac{2(x^2 - 2)}{x(1 + \log x)}$.			
	OR	20	CO3	
	If $x = \sqrt{vw}$, $y = \sqrt{wu}$, $z = \sqrt{uv}$ and ϕ is a function of x , y and z , then			
	prove that:			
	$x\frac{\partial\phi}{\partial x} + y\frac{\partial\phi}{\partial y} + z\frac{\partial\phi}{\partial z} = u\frac{\partial\phi}{\partial u} + v\frac{\partial\phi}{\partial v} + w\frac{\partial\phi}{\partial w}.$			
Q 11	If u, v, w are the roots of the equation			
	$(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0,$	20	CO4	
	in λ , then find the Jacobian of u , v , w with respect to x , y , z .			