Name: Enrolment No:			
Cours Progra Cours Instru Sectio Questi	UPES End Semester Examination, December 2023 Differential Calculus	mester me ax. Mar pt all q h carryi	hrs. 0 ns fro marks)
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	If $y=x^{2} e^{2 x}$, then find the $n^{\text {th }}$ derivative of y at $x=0$.	4	CO1
Q 2	Find the asymptotes of the curve $f(x, y)=x^{2} y^{2}-y^{2}-2=0$ which are parallel to the axes.	4	CO 2
Q 3	Compute the value of $\left[\frac{1}{\frac{\partial f}{\partial x}}+\frac{1}{\frac{\partial f}{\partial y}}\right]$ at the point $(1,2)$ where $f(x, y)=$ $x^{3} y-x y^{3}$.	4	$\mathrm{CO3}$
Q 4	Evaluate $\lim _{(x, y) \rightarrow(1,2)} \frac{x^{2}+7 y}{x+y^{2}}$.	4	CO3
Q 5	Check whether the following functions $u(x, y)=\frac{x+y}{1-x y}, v(x, y)=\tan ^{-1} x+\tan ^{-1} y$ are functionally dependent or not.	4	CO4
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	Test the differentiability of the following function at $x=0$, where $\begin{aligned} f(x) & =x \frac{e^{1 / x}-e^{-1 / x}}{e^{1 / x}+e^{-1 / x}}, \text { when } x \neq 0 \\ & =0 \quad, \quad \text { when } x=0 \end{aligned}$	10	CO1
Q 7	Trace the curve $y^{2}(2 a-x)=x^{3}(a>0)$.	10	CO 2
Q 8	State and prove Euler's theorem for partial differentiation of a homogeneous function $f(x, y)$.	10	CO 3

Q 9	Expand $f(x, y)=y^{x}$ about $(1,1)$ up to second degree terms and hence evaluate (1.02) ${ }^{1.03}$. OR Discuss the maxima and minima of the function $f(x, y)=x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+7$	10	CO4
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	If $x^{x} y^{y} z^{z}=c$, show that at $x=y=z$, (i) $\frac{\partial^{2} z}{\partial x \partial y}=-(x \log e x)^{-1}$ (ii) $\frac{\partial^{2} z}{\partial x^{2}}-2 x y \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=\frac{2\left(x^{2}-2\right)}{x(1+\log x)}$. OR If $x=\sqrt{v w}, y=\sqrt{w u}, z=\sqrt{u v}$ and ϕ is a function of x, y and z, then prove that: $x \frac{\partial \phi}{\partial x}+y \frac{\partial \phi}{\partial y}+z \frac{\partial \phi}{\partial z}=u \frac{\partial \phi}{\partial u}+v \frac{\partial \phi}{\partial v}+w \frac{\partial \phi}{\partial w} .$	20	CO 3
Q 11	If u, v, w are the roots of the equation $(\lambda-x)^{3}+(\lambda-y)^{3}+(\lambda-z)^{3}=0$ in λ, then find the Jacobian of u, v, w with respect to x, y, z.	20	CO4

