Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Programme Name: M.Tech - PE
Course Name: Drilling Engineering
Course Code: PEAU 7001

Semester: I
Time: 3 hrs
Max. Marks: 100

Instructions:

> All questions are compulsory.

However, internal choice has been provided. You must attempt only one of the alternatives in all such questions.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО			
Q 1	You are the company man on a well being drilled, well takes a kick. What will be your course of action? Name the steps you will take to kill the well.	04	CO1			
Q 2	Explain the key points to decide casing setting depth.	04	CO2			
Q 3	Define PDC Bits and major components of PDC bit design?	04	CO1			
Q 4	Q 4 Define KOP, inclination angle and azimuth angle?					
Q 5	Q 5 Distinguish between MWD & LWD					
	SECTION B (4Qx10M= 40 Marks)					
Q 6	a) Draw the flow diagram of a "Mud Circulation Systemb) Explain any two properties of a drilling fluid and illustrate their importance.	5+5	CO1 + CO2			
Q 7	a) Explain the types of drilling bits and design factors considered while designing a drill bit.b) Summarize different considerations needed while planning a directional well.	5+5	CO3			

	OR		
	List out the different deflection tools used in directional drilling? Explain whip stock tool types with their advantages and disadvantages?	10	CO3
Q 8	Assam's Baghjan gas well blowout on June 9,2020 –Case Study Explain briefly – i. The path of tragedy: Background ii. What went wrong: investigation. iii. The consequences: Ecology, Economics, etc. iv. Long term & short-term effects on environment v. What lessons learnt for future: Key recommendations.	10	CO4
Q 9	Discuss the properties of class G & H cement powders and role of accelerators and retarders in cement slurry additives. OR Differentiate between single stage cementing operation and multi-stage cementing operation?	10	CO4
	SECTION-C		
Q 10	(2Qx20M=40 Marks) A drilling string consists of 750 ft of Drill Collar have weight of 90 ppf and Drill Pipes have weight of 25 ppf was used to drill a well to a depth of 16,500 ft using 11.4 ppg drilling mud. If yield strength of drill pipe is 600,000 lbf and steel density is 65 ppg calculate the safety factor at this situation. And if the maximum overpull that can be applied to the drill string is 75,000 lbf, to what depth can the current drill string be used to drill this well?	20	CO5
	OR		
	a) Designing a Deviated Well. It has been decided to sidetrack a well from 1500 ft. The sidetrack will be a build and hold profile with the following specifications:		
	Target Depth : 10000 ft. Horizontal departure : 3500 ft. Build up Rate : 1.5° per 100 ft.		
	Calculate the following: i. the drift angle of the well. ii. the TVD and horizontal deviation at the end of the buildup section. iii. the total measured depth to the target.	15+5	CO5

	b) Discuss the advantages of Rotary steerable system over mud motor systems		
Q 11	I. Calculate the Drill collar Dimensions and weights:		
	a. What is the weight in air of 200 ft of 9 1/2" x 2 13/16" drill collar?		
	b. What is the weight of this drill collar when immersed in 11 ppg mud?		
	c. It is not uncommon for 5" 19.5 lb/ft drill pipe to be used in the same string as 8 1/4" x 2 13/16" drill collars. Compare the nominal I.D. of this drill pipe and Drill collar size and note the differences in wall thickness of these tubulars.	20	CO6
	II. The highest rate of penetration for a particular 12 1/4" bit will be achieved when 25,000lbs weight on bit (Wob) is applied to the bit. Assuming that the bit will be run in 12 ppg mud, calculate the length of drill collars required to provide 25,000 lbs Wob.		
	a) Calculate the weight (in air) of 10000 ft of 5" 19.5 lb/ft Grade G drill pipe with 4 1/2" IF connections.		
	b) Calculate the weight of this string in 14 ppg mud.		
	Calculate the length of 9 1/2" x 2 13/16" drill collars that would be required to provide 25,000 lbs Wob and keep the drill pipe in tension in 12 ppg mud		
	OR		
	The 13 3/8" casing string of a well is to be cemented using class 'G'cement. Calculate the following for two stage cementing calculation:		
	a) The required number of sacks of cement for a 1 st stage of 700 ft. and a 2 nd stage of 500 ft. (Allow 20% excess in open hole)	20	CO6
	b) The volume of mixwater required for each stage.		
	c) The total hydrostatic pressure exerted at the bottom of each stage of		
	cement (assume a 10 ppg mud is in the well when cementing)		
	d) The displacement volume for each stage.		

• •	13 3		
17 1/2" open hole Depth : 7030 ft. Stage Collar Depth : 1500 ft. Shoetrack : 60 ft. Cement stage 1 (7000-6300 ft.) Class 'G' Density :15.9 ppg Yield : 1.18 ft³/sk Mixwater Requirements : 0.67 ft³/sk Cement stage 2 (1500-1000 ft.) Class 'G' + 8% bentonite Density : 13.3 ppg Yield : 1.89 ft³/sk Mixwater Requirements : 1.37 ft³/sk Mixwater Requirements : 1.37 ft³/sk OLUMETRIC CAPACITIES bbls/ft ft³/ft O.01776 0.099	15 5	ft	
Stage Collar Depth : 1500 ft. Shoetrack : 60 ft. Cement stage 1 (7000-6300 ft.) Class 'G' Density :15.9 ppg Yield : 1.18 ft³/sk Mixwater Requirements : 0.67 ft³/sk Cement stage 2 (1500-1000 ft.) Class 'G' + 8% bentonite Density : 13.3 ppg Yield : 1.89 ft³/sk Mixwater Requirements : 1.37 ft³/sk Mixwater Requirements : 1.37 ft³/sk OLUMETRIC CAPACITIES Drillpipe 5" drillpipe : 0.01776 0.099	13 3	00 ft.	
Shoetrack	17 1		
Cement stage 1 (7000-6300 ft.) Class 'G' :15.9 ppg Yield :1.18 ft³/sk Mixwater Requirements :0.67 ft³/sk Cement stage 2 (1500-1000 ft.) Class 'G' + 8% bentonite :13.3 ppg Yield :1.89 ft³/sk Mixwater Requirements :1.37 ft³/sk OLUMETRIC CAPACITIES bbls/ft ft³/ft Drillpipe 5" drillpipe : 0.01776 0.099	Stag		
Class 'G' Density :15.9 ppg Yield : 1.18 ft³/sk Mixwater Requirements : 0.67 ft³/sk Cement stage 2 (1500-1000 ft.) Class 'G' + 8% bentonite Density : 13.3 ppg Yield : 1.89 ft³/sk Mixwater Requirements : 1.37 ft³/sk OLUMETRIC CAPACITIES bbls/ft ft³/ft Drillpipe 5" drillpipe : 0.01776 0.099	Sho		
Density Yield : 1.18 ft³/sk Mixwater Requirements : 0.67 ft³/sk Cement stage 2 (1500-1000 ft.) Class 'G' + 8% bentonite Density : 13.3 ppg Yield : 1.89 ft³/sk Mixwater Requirements : 1.37 ft³/sk OLUMETRIC CAPACITIES bbls/ft ft³/ft 0.01776 0.099	<u>Cen</u>	00 ft.)	
Yield : 1.18 ft ³ /sk Mixwater Requirements : 0.67 ft ³ /sk Cement stage 2 (1500-1000 ft.) Class 'G' + 8% bentonite Density : 13.3 ppg Yield : 1.89 ft ³ /sk Mixwater Requirements : 1.37 ft ³ /sk OLUMETRIC CAPACITIES bbls/ft ft ³ /ft O.01776 0.099	Clas		
Mixwater Requirements : 0.67 ft³/sk Cement stage 2 (1500-1000 ft.) Class 'G' + 8% bentonite Density : 13.3 ppg Yield : 1.89 ft³/sk Mixwater Requirements : 1.37 ft³/sk OLUMETRIC CAPACITIES bbls/ft ft³/ft O.01776 0.099	Den		
Cement stage 2 Class 'G' + 8% bentonite Density Yield Yield Mixwater Requirements Capacities Class 'G' + 8% bentonite Density 13.3 ppg 1.89 ft³/sk Mixwater Requirements 1.37 ft³/sk Clumetric capacities bbls/ft ft³/ft O.01776 O.099	Yiel	sk	
Class 'G' + 8% bentonite Density : 13.3 ppg Yield : 1.89 ft ³ /sk Mixwater Requirements : 1.37 ft ³ /sk OLUMETRIC CAPACITIES bbls/ft ft³/ft Drillpipe 5* drillpipe : 0.01776 0.099	Mix	sk	
Density : 13.3 ppg Yield : 1.89 ft³/sk Mixwater Requirements : 1.37 ft³/sk OLUMETRIC CAPACITIES bbls/ft ft³/ft Drillpipe 5* drillpipe : 0.01776 0.099	<u>Cen</u>	00 ft.)	
Yield : 1.89 ft ³ /sk Mixwater Requirements : 1.37 ft ³ /sk OLUMETRIC CAPACITIES bbls/ft ft³/ft Drillpipe 5* drillpipe : 0.01776 0.099	Clas		
Mixwater Requirements : 1.37 ft ³ /sk OLUMETRIC CAPACITIES bbls/ft ft³/ft Drillpipe 5* drillpipe : 0.01776 0.099	Den		
OLUMETRIC CAPACITIES bbls/ft ft³/ft Drillpipe 5" drillpipe: 0.01776 0.099	Yiel	sk	
bbls/ft ft³/ft Drillpipe 5* drillpipe: 0.01776 0.099	Mix	\mathbf{k}	
Drillpipe 0.01776 0.099	METRIC CAPA		
5" drillpipe : 0.01776 0.099			ft³/ft
Carina			0.0997
13 3/8" 72 lb/ft : 0.1480 0.831			0.8314 0.8215
Open Hole	en Hole		
			3.687 1.6703
Annular Spaces 26" hole x 20" Casing: 0.2681 1.505 17 1/2" hole x 13 3/8" Casing: 0.1237 0.694 30" Casing x 20" Casing: 0.3730 2.094			1.5053

Tables

CAPACITY AND DISPLACEMENT OF DRILLPIPE

SIZE	NOMINAL WEIGHT				N END CEMENT	CLOSED END DISPLACEMENT			
CONN.	LB/FT	0.11.00	LB/FT	L/M	GALL/FT	L/M	GALL/FT	L/M	GALL/FT
2 ³ / ₈ 2 ³ / ₈ IF NC26	6.65	E75 X95 G105	7.00 7.08 7.08	1.68	0.135	1.39 1.34 1.34	0.107 0.108 0.108	3.01 3.02 3.02	0.242 0.243 0.243
2 ⁷ / ₈ 2 ⁷ / ₈ IF NC 31	10.4	E75 X95 G105 S135	10.82 10.89 10.89 11.20	2.36	0.190	2.05 2.06 2.06 2.12	0.165 0.166 0.166 0.171	4.41 4.42 4.42 4.48	0.355 0.356 0.356 0.361
	9.5	E75	10.39	4.54	0.366	1.97	0.159	6.51	0.525
31/2	13.3	E75 X95 G105	13.86 14.32 14.38	3.88 3.96 3.87	0.312 0.319 0.312	2.63 2.71 2.73	0.212 0.218 0.220	6.51 6.67 6.60	0.524 0.537 0.532
IF NC38	15.5	E75 X95 G105	16.42 16.54 16.61	3.46	0.279	3.11 3.14 3.15	0.250 0.253 0.254	6.57 6.60 6.61	0.529 0.532 0.533
5 4 ¹ / ₂	19.5	E75 X95 G105 S135	20.99 21.09 21.50 22.09	9.16	0.738	3.98 4.00 4.08 4.19	0.320 0.322 0.329 0.337	13.14 13.16 13.24 13.35	1.058 1.070 1.087 1.075
IF NC50	25.6	E75 X95 G105	27.01 28.30 28.11	8.11 8.10 8.09	0.653 0.652 0.651	5.12 5.36 5.33	0.412 0.432 0.429	13.23 13.46 13.42	1.065 1.084 1.080

DRILL COLLAR WEIGHTS (STEEL) POUNDS PER FOOT

Collar						E OF COL	LAR				
O.D.	1-1/2	1-74	2	2-1/4	2-1/2	$2^{-1}V_{10}$	3	3-1/4	3-1/2	3-1/4	4
3-3/6	24.4	22.2									
3-1/2	26.7	24.5			2 2 2 2 2 2 2						
$3^{-3}/4$	31.5	29.3	L	e e. Rece							
3-7/8	34.0	31.9	29.4	26.5							
4	36.7	34.5	32.0	29.2							
4-1/6	39.4	37.2	34.7	31.9							
4-1/4	42.2	40.0	37.5	34.7						A	
4-1/2	48.0	45.8	43.3	40.5							
$4-3/_{4}$	54.2	52.0	49.5	46.7	43.5						
5	60.2	58.5	55.9	53.1	49.9						
5-1/ _a	67.5	65.3	62.8	59.9	56.8	53.3	I.				
5-1/2	74.7	72.5	69.9	67.2	63.9	60.5	56.7				
5-3/4	82.1	79.9	77.5	74.6	71.5	67.9	64.1		1		
6	89.9	87.8	85.3	82.5	79.3	75.8	71.9	67.8	63.3		
6-1/4	98.1	95.9	93.5	90.6	87.5	83.9	80.1	75.9	71.5		
6-1/,	106.6	104.5	101.9	99.1	95.9	92.5	88.6	84.5	79.9		
6-7,	115.5	113.3	110.8	107.9	104.8	101.3	97.5	93.3	88.8		
7	124.6	122.5	119.9	117.1	113.9	110.5	106.6	102.5	97.9	93.1	87.9
7-1/4	134.1	131.9	129.5	126.6	123.5	119.9	116.1	111.9	107.5	102.6	97.5
7-1/2	143.9	141.7	139.3	136.5	133.3	129.8	125.9	121.8	117.3	112.5	107.3
$7-7/_{\rm e}$	154.1	151.9	149.5	146.6	143.5	139.9	136.1	131.9	127.5	122.6	117.5
8	164.6	162.5	149.9	157.1	153.9	150.5	146.6	142.5	137.9	133.1	127.9
8-74	175.4	173.3	170.8	167.9	164.8	161.3	157.5	153.3	148.8	143.9	138.8
$8 \cdot V_2$	186.6	184.4	181.9	179.1	175.9	168.6	172.5	164.5	159.9	155.1	149.9
8-7,	198.1	195.9	193.9	190.6	187.4	183.9	180.1	175.9	. 171.4	166.6	161.5
9		207.8	205.3	202.4	199.3	195.8	191.9	187.8	183.3	178.5	173.3
9-1/2	1444	232.4	229.9	227.1	223.9	220.4	216.6	212.4	297.9	203.1	197.9
10	<u> </u>		255.9	253.1	249.9	246,4	242.6	238.4	233.9	229.1	223.9
10-1/2			283.3	280.4	277.3	273.8	269.9	265.8	261.3	256.4	251.3
11	-				305.9	302.4	298.6	294.4	289.9	285.1	279.9

MUD DENSITY, GRADIENT AND BUOYANCY FACTOR

NOTE: Buoyancy factor is for STEEL only

Mud density						Mud densit	Gradient	Buoyancy	
logu/rm²	lb/gall	Ib/ft ³	psi/ft	Factor	kg/m ³	lb/gall	lb/ft ³	psi/ft	Factor
1000 1010	8.34 8.40	62.4 62.8	.433 .436	.873 .872	1800 1820	15.0 15.2	112 114	.779 .790	.771 .768
1030	8.50	64.3	.447	.869	1850	15.4	115	.800	765
1060	8.80	65.8	.457	.866	1870	15.6	117	.810	.762
1080	9,00	67.3	.468	.862	1890	15.8	118	.821	.758
1100	9.20	68.8	.478	.860	1920	16.0	120	.831	.755
1130	9.40	70.3	.488	.856	1940	16.2	121	.842	753
1150	9.60	71.8	.499	.853	1970	16.4	123	.852	.748
1164	9.625	72.0	.500	.853	1990	16.6	124	.862	.746
1180	9.80	73.3	.509	.850	2010	16.8	126	.873	.743
1200	10.0	74.8	.519	.847	2040	17.0	127	.883	.740
1220	10.2	76.3	.530	.844	2060	17.2	1.29	,894	.737
1250 1270	10.4	77.8 79.3	.540	.841 .838	2090	17.4	130	.904	.734
1270 1290	10.6 10.8	79.3 80.8	.551 .561	.838	2110 2130	17.6 17.8	132 133	.914 .925	.731
1230	10.8	80,8	.561	.835	2130	17.8	133	.925	728
1320	11.0	82.3	1.571	.832	2160	18.0	135	.935	.725
1340	11.2	83.8	.582	.829	2180	18.2	136	.945	.722
1370 1390	11.4 11.6	85.3 86.8	.592	.826 .823	2210	18.4	138	.956	.719
13290	11.6	88.3	.603	823	2230 2250	18.6 18.8	139 141	.966 977	.716 .713
1410	11.0	00.3	013	1.020	2200	18.8	141	3977	./13
1440	1.2.0	89.8	.623	.817	2280	19.0	142	.937	.710
1460	12.2	91.3	.634	.814	2300	19.2	144	.997	707
1490	12.4	92.8	.644	.810	2330	19.4	145	1.01	.704
1510 1530	12.6 12.8	94.3 95.8	.655	.808 .804	2350 2370	19.6 19.8	147 148	1.02	.701 698
1530	12.8	90.8	.005	.804	2350	19.8	148	1.03	.638
1560	13.0	97.3	.675	.801	2400	20.0	150	1.04	.634
1580	13.2	98.7	.686	.798	2420	20.2	151	1.06	.692
1610	13.4	100	.696	.795	2450	20.4	153	1.06	.688
1630	13.6	102	.706	.792	2470	20.6	154	1.07	.685
1650	13.8	103	.717	.789	2490	20.8	156	1.08	.682
1680	14.0	105	.727	.786	2520	21.0	157	1.09	,679
1700	14.2	106	.738	.783	2540	21.2	159	1.10	.676
1730	14.4	108	.748	.780	2570	21.4	160	1.11	.673
1750 1770	14.6 14.8	109	.758	.777 .774	2590	21.6	162	1.12	.670
1770	14.8	1.11	7623	.774	2610	21.8	163	1.13	.667