Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Vehicle Dynamics Program: M.Tech E-Mobility Course Code: MEEM7003 Semester: I Time: 03 hrs Max. Marks: 100

Instructions: Wherever applicable, must draw appropriate free body diagram and work with symbols before substituting numerical values.
SECTION A

	(5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Explain the response of an underdamped system for free vibrations and logarithmic decrement.	4	CO1
Q 2	Explain slip angle. Discuss why it is required during turning?	4	CO1
Q 3	Explain various sources that cause vibrations in a vehicle.	4	CO1
Q 4	Explain the 'angle of rolling down' for a passenger car parked on a banked road along with formula. (Note: road is not inclined but is banked)	4	CO1
Q 5	Analyze the behavior of an oversteer and understeer vehicle by plotting 'steer angle vs speed' curve for both. Analyze how the steer angle should be changed for each while negotiating a constant radius curve if the driver also accelerates during the turn.	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		1
Q 6	A car with mass = 1500 kg, wheel base = 3 m, has 60% of weight distribution on front tires. Lateral stiffness of front and rear tires is C_f = 40 kN/rad and C_r = 45 kN/rad. Calculate the understeer coefficient and critical speed or characteristic speed as applicable.	10	CO3
Q 7	Analyze the reason for rolling resistance. Also derive an expression for effective radius (also called rolling radius) of tire.	10	CO2
Q 8	A car has 55% of static load on the rear axle. The ratio of height of CG to wheel base, h/L=0.2. Coefficient of friction $\mu = 0.8$, coefficient of rolling resistance $f_r = 0.01$. Determine the ideal brake force distribution for which the system should be designed. (That is K_{bf} and K_{br})	10	CO3
Q 9	Design a suitable vibration absorber for a machine that has mass of 50 kg and runs at 6000 rpm. Its forcing frequency is very near to its natural	10	CO3

	frequency. The nearest natural frequency of the 2 DOF system is to be at least 20% from the forced frequency.		
	OR		
	Determine the parameters in an equivalent system model of the system when θ , the clockwise angular displacement of the bar from the system's equilibrium position, is used as the generalized coordinate.		
	$ \begin{array}{c} $		
	SECTION-C (20):20M_40 Marka)		
Q 10	(2Qx20M=40 Marks)Gopal, as a dedicated cop, is doing his best to chase a suspect. He is driving a 'rear wheel drive' car uphill and using the maximum available traction. He is only able to accelerate at $1 m/s^2$. The relevant data is the following –Mass of car, m = 1000 kg 	20	CO4
	Determine/do (a) Draw a FBD showing all forces (b) The load on front and rear axle		

	(c) The available traction force(d) Evaluate the coefficient of friction at road-tire interface. Analyze if the value is reasonable.		
Q 11	A vehicle is modeled using a quarter car model. The relevant data is the following –		
	Sprung mass, $m_s = 2000 kg$ Unsprung mass, $m_{us} = 200 kg$ Suspension system stiffness, $k_s = 100 kN/m$ Tire stiffness, $k_t = 1000 kN/m$		
	Damping coefficients c_s , c_t are negligible. (Use them in the formulation and eventually make them zero).		
	Determine the natural frequencies using (a) matrix method and (b) approximate method and compare them.		
	OR	20	CO3
	OR A vehicle is modeled using the pitch & bounce model. The relevant data is the following –	20	CO3
	A vehicle is modeled using the pitch & bounce model. The relevant	20	CO3