Name:

Enrolment No:

	UPES			
Course	End Semester Examination, December 2023	Semester : 1	st	
Course	: Electric and Hybrid Vehicles m: M.Tech-E-Mobility		03 hrs.	
-	Code: MEEM-7001	Max. Marks:		
Course	Couc. MEEN-7001	Max. Marks.	100	
Instruc	tions: Assume any missing data and mention it clearly.			
SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	A Hybrid and Electric vehicle uses a 25 KW motor and 120 KW gasoline engine. Is it mild, mild hybrid or full hybrid? State the advantages and disadvantages of it by considering its hybridness.		CO1	
Q 2	Differentiate series and parallel hybrids with the suitable line diagram of both.	4	CO1	
Q 3	Discuss the effect of aerodynamics drag on the performance of hybrid vehicles.	4	CO1	
Q 4	Discuss torque-speed characteristics of hybrid vehicles.	4	CO2	
Q 5	How is the fuel economy of hybrid vehicles calculated? Explain with mathematical formulae.	¹ 4	CO2	
	SECTION B (4Qx10M= 40 Marks)			
0.6	A straight roadway has a profile in the x–y plane given by			
Q 6	$f(x_f) = 7\sqrt{x_f} \text{ for } 0 \le x_f \le 2 \text{ miles} = 10,560 \text{ feet}$			
	$f(x_f)$ and x_f are in ft.	10	CO1	
	a. Derive an expression for slope of roadways($\beta(x_f)$). Calculate β (1 mile).			
	b. Calculate the tangential road length, s from 0 to 2 miles.			
Q 7	Discuss the vehicle kinetics and roadways by considering all parameters (forces, grade-ability etc.).	10	CO2	
Q 8	A hybrid electric vehicle has a downsized engine, an electric motor/generator and an ultracapacitor-bank for electric propulsion assistance. The vehicle is driven for 30 min at a constant velocity of 25 m/s with engine operating at BSFC = 270 g/kWh and electric motors. The traction power required for this constant velocity cruise is 15.2 kW However, the ultracapacitor-bank has an additional 960 kJ of energy captured during a regenerative braking. Calculate the fuel economy when	10	CO3	

	all the ultracapacitor energy is utilized for propulsion within the 30 min constant velocity cruising period.		
Q 9	Discuss the speed vs time and acceleration vs time curve of the Japanese (JP-015) drive cycle. OR Discuss the speed vs time and acceleration vs time curve of the Extra Urban drive cycle (EUDC).	10	CO3
	SECTION-C (2Qx20M=40 Marks)		1
Q 10	The parameters of a vehicle are given below: Vehicle mass:2000 Kg Driver/one passenger: 80 kg Rolling resistant coefficient: 0.01 Wheel radius: 0.3305 m Aerodynamics drag coefficient: 0.45 Frontal Area: 2.5 m ² The vehicle accelerates from 0 velocities to 21 m/s in 5 s on a 0.5% roadway grade when it reaches the maximum power limit of the propulsion unit. The vehicle then accelerates in constant power mode for another 7 s. The maximum power limit is 145kW. a. Write the dv/dt equation for constant power acceleration for the given conditions. b. What is the velocity after a total time of 10 s? c. What is the velocity at 12s, if the roadway grade changes to 4% at 10 s?	20	CO2
Q 11	Discuss the mechanism of automatic transmission in power split hybrid vehicles. OR The performance of Hybrid vehicles depends upon its architecture. Discuss all hybrid-based architecture in detail with labeled diagram.	20	CO3