Name:

Enrolment No:

Program: BSc (Mathematics, Chemistry, Geology)			Semester: I Time: 03 hrs. Max. Marks: 100		
SECTION A (5Qx4M=20Marks)					
S. No.		Marks	CO		
Q 1	Show that the differential equation, $(2xy^3 + xy)dx + (3x^2y^2 + \frac{x^2}{2})dy = 0$ is exact	4	CO1		
Q 2	Evaluate, $\int_0^\infty x^3 e^{-x^2} dx$ using Gamma function	4	C01		
Q 3	Verify that the Hermite polynomial of degree 4 has the form $H_4(x) = 16x^4 - 48x^2 + 12$ [where nth degree Hermite polynomial, $H_n(x) = (-1)^n e^{x^2} \frac{d^n(e^{-x^2})}{dx^n}$]	4	CO2		
Q 4	Prove that for Legendre polynomial of degree <i>l</i> , $P_l(-x) = (-1)^l P_l(x)$	4	CO2		
Q5	Evaluate the complex integral, $\oint \frac{z^2 + 1}{(z+1) + (z+2)} dz \text{where, } z = \frac{3}{2}$	4	CO3		
	SECTION B (4Qx10M= 40 Marks)				
Q6	What is De Moivre's theorem? Prove that $(\cos\theta + i\sin\theta)^n = \cos \theta + i\sin \theta$	10	CO1		

Q7	Fourier function is defined as, $f(x) = x^2$, $0 < x < 2\pi$		
	Evaluate, a_0 and a_n		
	OR	10	CO2
	Fourier function is defined as, $f(\mathbf{x}) = \pi$, $0 < x < 2\pi$		
	Evaluate, a_0 and a_n		
Q8	Using beta function, Show that $\int_{0}^{1} \frac{dx}{\sqrt{1-x^{4}}} = \frac{\sqrt{\pi}}{4} \frac{\sqrt{(\frac{1}{4})}}{\sqrt{(\frac{3}{4})}}$	10	CO3
Q9	Hermite polynomial differential equation for 1D harmonic oscillator is		
	given by $H_{n}^{\prime\prime}(\xi) - 2xH_{n}^{\prime}(\xi) + (\lambda - 1)H_{n}(\xi) = 0$		
	Applying the concept of Hermite polynomial as a solution, deduce the recurrence relation.	10	CO4
	[Consider, $\lambda = \frac{2E}{\hbar\omega}$ and $\lambda - 1 = 2n$, $\xi = \alpha x$, $\alpha = \sqrt{\frac{m\omega}{\hbar}}$. Symbols have their usual meaning]		
	SECTION C (2Qx20M=40 Marks)		
Q10	SECTION C		
Q10	SECTION C (2Qx20M=40 Marks)	10	CO2
Q10	(a) Find the roots of the complex number, $x^4 + i = 0$ (b) Use Cauchy's integral formula to show		
Q10	(a) Find the roots of the complex number, $x^4 + i = 0$	10 10	CO2 CO2
Q10	(a) Find the roots of the complex number, $x^4 + i = 0$ (b) Use Cauchy's integral formula to show		
Q10	SECTION C (2Qx20M=40 Marks) (a) Find the roots of the complex number, $x^4 + i = 0$ (b) Use Cauchy's integral formula to show $\oint \frac{e^{zt}}{z^2 + 1} dz = 2\pi i sint$ where, t > 0 and z = 3		
Q10	SECTION C $(2Qx20M=40 Marks)$ (a) Find the roots of the complex number, $x^4 + i = 0$ (b) Use Cauchy's integral formula to show $\oint \frac{e^{zt}}{z^2 + 1} dz = 2\pi i sint$ where, t > 0 and z = 3 OR		

Q11	(a) A voice signal curve is best fitted with ordinary polynomial $8x^3 - 4x^2 + 2x + 2$. Convert it into Hermite polynomial	10	CO3
	(b) Verify the Legendre polynomial recurrence relation,	10	CO3
	$(2l+1)xP_l(x) - lP_{l-1}(x) = (l+1)P_{l+1}(x)$		
	where $g(x,t) = \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{l=0}^{\infty} P_l(x) t^l$		