Name: Enrolment No:			
UPES End Semester Examination, December 2023 Course: Mathematical Physics (Generic) \quadSemester: I Program: BSC (Mathematics, Chemistry, Geology) Course Code: PHYS1031 Instructions: All questions are compulsory			
SECTION A (5Qx4M=20Marks)			
S. No.		Marks	CO
Q 1	Show that the differential equation, $\left(2 x y^{3}+x y\right) d x+\left(3 x^{2} y^{2}+\frac{x^{2}}{2}\right) d y=0$ is exact	4	CO1
Q 2	Evaluate, $\int_{0}^{\infty} x^{3} e^{-x^{2}} d x$ using Gamma function	4	CO1
Q 3	Verify that the Hermite polynomial of degree 4 has the form $\mathrm{H}_{4}(x)=16 x^{4}-48 x^{2}+12$ [where nth degree Hermite polynomial, $\mathrm{H}_{\mathrm{n}}(x)=(-1)^{\mathrm{n}} \mathrm{e}^{\mathrm{x}^{2}} \frac{\mathrm{~d}^{\mathrm{n}}\left(\mathrm{e}^{-\mathrm{x}^{2}}\right)}{\mathrm{dx}^{\mathrm{n}}}$]	4	CO2
Q 4	Prove that for Legendre polynomial of degree l, $P_{l}(-x)=(-1)^{l} P_{l}(x)$	4	CO2
Q5	Evaluate the complex integral, $\oint \frac{z^{2}+1}{(z+1)+(z+2)} d z \quad \text { where, }\|z\|=\frac{3}{2}$	4	CO3
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q6	What is De Moivre's theorem? Prove that $(\cos \theta+i \sin \theta)^{\mathrm{n}}=\operatorname{cosn} \theta+\mathrm{i} \operatorname{sinn} \theta$	10	CO1

Q7	Fourier function is defined as, $f(\mathrm{x})=\mathrm{x}^{2}, \quad 0<x<2 \pi$ Evaluate, a_{0} and a_{n} OR Fourier function is defined as, $f(\mathrm{x})=\pi, \quad 0<x<2 \pi$ Evaluate, a_{0} and a_{n}	10	CO2
Q8	Using beta function, Show that $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{4}}}=\frac{\sqrt{\pi}}{4} \frac{/\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}$	10	CO3
Q9	Hermite polynomial differential equation for 1D harmonic oscillator is given by $\mathrm{H}_{\mathrm{n}}{ }^{\prime \prime}(\xi)-2 \mathrm{xH}_{\mathrm{n}}{ }^{\prime}(\xi)+(\lambda-1) \mathrm{H}_{\mathrm{n}}(\xi)=0$ Applying the concept of Hermite polynomial as a solution, deduce the recurrence relation. $\text { [Consider, } \begin{aligned} & \lambda=\frac{2 \mathrm{E}}{\hbar \omega} \text { and } \lambda-1=2 \mathrm{n}, \quad \xi=\alpha \mathrm{x}, \\ & \alpha=\sqrt{\frac{m \omega}{\hbar}} . \text { Symbols have their usual meaning] } \end{aligned}$	10	CO4
	$\begin{gathered} \text { SECTION C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$		
Q10	(a) Find the roots of the complex number, $x^{4}+i=0$ (b) Use Cauchy's integral formula to show $\oint \frac{e^{z t}}{z^{2}+1} d z=2 \pi i \sin t \quad \text { where, } \mathrm{t}>0 \text { and }\|\mathrm{z}\|=3$ OR (a) Show that $\frac{(\cos \theta+i \sin \theta)^{8}}{(\sin \theta+i \cos \theta)^{4}}=\cos 12 \theta+i \sin 12 \theta$ (b) Use Cauchy's integral formula to show $\oint \frac{d z}{z^{2}+1}=0 \quad \text { where, } \quad\|z\|=2$	10	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 2 \\ & \mathrm{CO} 2 \\ & \mathrm{CO} 2 \end{aligned}$

Q11	(a) A voice signal curve is best fitted with ordinary polynomial $8 \mathrm{x}^{3}-4 \mathrm{x}^{2}+2 \mathrm{x}+2$. Convert it into Hermite polynomial (b) Verify the Legendre polynomial recurrence relation, $(2 l+1) x P_{l}(x)-l P_{l-1}(x)=(l+1) P_{l+1}(x)$	$\mathbf{1 0}$	$\mathbf{C O 3}$
	where $\mathrm{g}(\mathrm{x}, \mathrm{t})=\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{l=0}^{\infty} \mathrm{P}_{l}(x) t^{l}$	$\mathbf{C O 3}$	

