Name:

Enrolment No:

Semester: 1

UPES

End Semester Examination, December 2023

Course: Organometallic and Bioinorganic Molecules

Program: MSc. Chemistry

Course Code: CHEM7048

Time: 03 hrs.

Max. Marks: 100

Instructions:

SECTION A
(5Qx4M=20Marks)

	(5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	Define hapticity of a ligand. What is the hapticity of benzene ring and cyclooctatetraene?	4	CO1
Q2	Identify x and Z for the metal complex $[V(CO)x]^{Z}$ so that it obeys the 18-electron rule.	4	CO3
Q3	Explain the structures of a. Ferrocene in eclipsed and staggered form. b. Zeise's salt	2+2	CO2
Q4	What are metalloenzymes? Give two examples of Zinc containing metalloenzymes and their biological functions.	4	CO1
Q5	Draw the Tollman's catalytic loop for hydrogenation of alkenes by Wilkinson's catalyst.	4	
	SECTION B		
	(4Qx10M = 40 Marks)		
Q6	Explain how is the oxygen carrying capacity of hemoglobin determined by? a. Cooperativity effect and b. Bohr's effect.	5+5	CO4
Q7	Identify the possible hapticity of the following ligands with a single d-block metal atom. a. Butadiene b. Cyclopentadienyl c. C ₃ H ₅ - d. Ethene	2.5+2.5+2.5 +2.5	CO2
Q8	Discuss the oxidation state of Iron in oxy-hemoglobin and deoxy-hemoglobin.	10	CO2
Q9	Draw the oxygen saturation curves for myoglobin and hemoglobin and justify why myoglobin has greater affinity for oxygen than hemoglobin.	10	CO1

	OR What role does Cytochrome P-450 play in biological systems? Explain.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	 a. Explain which of the following metal complexes will obey 18 electron rules? A) [(η⁵ - C₅H₅)Fe(CO)₂]₂ B) [(η⁵ - C₅H₅)Mo(CO)₂]₂²⁻ C) [Ir(CO)₂ Br₂]²⁺ D) Os(CO)(≡ CPh)(PPh₃)₂ CI b. Draw the molecular orbital diagram of carbonyl (CO). Why CO 	10+10	CO4
Q11	 a carbonyl is considered a good σ-donor as well as a good π-acceptor ligand. a. Differentiate between the dissociate substitution and associate substitution reactions of metal carbonyls. Write suitable examples. b. A green Chromium Compound A on fusion with alkali gives a yellow compound B which on acidification gives an orange-colored Compound C which on treatment with NH4Cl, gives another orange-colored product D. The product D on strong heating decomposes to gives back compound A. Identify A, B, C and D write down the equations involved in these chemical reactions. 	10+10	CO3
	OR		
	Draw the structure of chlorophyll. What role does it play during photosynthesis? Discuss in detail.	20	CO4