Name: Enrol			
Cours Progr Cours Nos. 0 Instru 1) 2) 3) 4) 5)		se onl	
SECTION A(Attempt all Five Questions) (5Qx4M=20Marks)			
S. No.		Marks	CO
Q 1	Draw the potential energy diagram of a simple harmonic oscillator and draw the graph of ψ^{2} vs r plot where ψ is the vibrational wavefunction. Indicate the Energy of each vibrational state.	4	CO1
Q 2	Calculate the eigen value of a function $\psi=4 \mathrm{e}^{-6 \mathrm{x}}$ when the operator is $\frac{d^{2}}{d x^{2}}$.	4	CO3
Q 3	Write the Schrodinger equation of a hydrogen atom in polar and Cartesian coordinate.	4	CO1
Q 4	Which orbital has two radial and two angular nodes?	4	CO2
Q 5	(i) Write the Schrodinger equation of a particle in three-dimensional box. (ii) What is the energy expression of a particle in a cubic box.	4	CO3
SECTION B (Attempt all Questions; internal choice is given for question number 9) (4Qx10M=40 Marks)			
Q 6	(a) Assume hexatriene as particle in one dimensional box with $\mathrm{L}=0.85 \mathrm{~nm}$. What is the wavelength (nm) of light required for the transition from ground state to the first excited state? (b) A particle in 3D cubic box of length "a" has energy of $\frac{14 h^{2}}{8 m a^{2}}$. What is the degeneracy of the state?	6+4	CO2
Q 7	(a) What is the expression of rotation constant $\mathbf{B}\left(\mathrm{cm}^{-1}\right)$ in terms of moment of	5+5	CO2

	inertia? If $\mathrm{B}=20 \mathrm{~cm}^{-1}$, what are the energies of the rotational energy levels of the molecule with $\mathrm{J}=0,1,2$ and 3 ? (b) Write the Schrodinger equation of a simple harmonic oscillator. What is zero-point energy?		
Q 8	(a) The rotation of HF can be modelled as rigid rotor. The energy difference between the $4^{\text {th }}$ and $5^{\text {th }}$ rotational level is $200 \times 10^{-23} \mathrm{~J}$. Calculate the energy of the rotational level with $\mathrm{J}=1$. (b) Draw the radial probability density plot of $1 \mathrm{~s}, 2 \mathrm{~s}$, and 2 p orbitals.	10	CO2
Q9	(a) The vibration of ${ }^{35} \mathrm{Cl}^{35} \mathrm{Cl}$ molecule can be considered as simple harmonic oscillation. The force constant is $240 \mathrm{Nm}^{-1}$. Calculate the fundamental vibration frequency and the zero-point energy of this molecule. OR Calculate the average momentum of a particle in vibrational state "v" which is described by wave function " ψ_{v} ". Justify your answer. (b) Find the value of the commutator $\left[\mathrm{x}, \mathrm{p}_{\mathrm{x}}\right]$ and $\left[\mathrm{p}_{\mathrm{x}}, \mathrm{T}_{\mathrm{x}}\right]$ where $\mathrm{p}_{\mathrm{x}}, \mathrm{T}_{\mathrm{x}}$ are momentum and kinetic energy operators along the X direction. OR What is Hermitian operator? Prove that the Hermitian operators always give real eigen value.	$5+5$	CO 3
SECTION-C (Attempt all Questions; internal choice is given for question number 11) (2Qx20M=40 Marks)			
Q10	(a) Derive the expression of wave function and energy of a particle in threedimensional box. (a) (i) Draw the wavefunction and energy levels of a simple harmonic oscillator. (ii) The lowest energy of 1D SHO is $300 \mathrm{~cm}^{-1}$, What is the energy of the next higher energy level?	10+10	CO4
Q 11	(a) (i) Derive the expression of angular momentum operators along X, Y and Z directions. (ii) What is the value of the commutator $\left[\mathrm{L}^{2}, \mathrm{~L}\right]$? OR Given that a particle is restricted to the region $-\mathrm{a}<\mathrm{x}<\mathrm{a}$ and has a wave function ψ proportional to $\cos \left(\frac{\pi x}{2 a}\right)$, normalize the wave function. (b) Calculate the force constant of the molecule $\left({ }^{1} \mathrm{H}^{35} \mathrm{Cl}\right)$ if the separation of its	10+10	CO4

	two lowest vibrational energy level is $3.313 \times 10^{-20} \mathrm{~J}$. OR Which of the following functions are acceptable as wave functions? Explain (i) $\psi=e^{2 x}$ (ii) $\psi=e^{-x}$ (iii) $\psi=\mathrm{e}^{-\mathrm{x}^{2}}$ (iv) $\quad \psi=\sin x$ (v) $\psi=\tan \mathrm{x}$		

