Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Quantum Chemistry Programme: MSc (Chemistry)

Course Code: CHEM 7047

Semester: I Time: 03 hrs Max. Marks: 100

Nos. of page(s): 3

Instructions: Read all the below mentioned instructions carefully and follow them strictly

- 1) Write your name and enrollment no. at the top of the question paper.
- 2) Do not write anything else on the question paper except your name and roll number.
- 3) Attempt all the parts of a question at one place only.
- 4) Internal choices are given for question number 9 and 11.
- 5) CO1, CO2, CO3 & CO4 in the last column stand for course outcomes and are for official use only.

	SECTION A (Attempt all Five Questions) (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Draw the potential energy diagram of a simple harmonic oscillator and draw the graph of ψ^2 vs r plot where ψ is the vibrational wavefunction. Indicate the Energy of each vibrational state.	4	CO1
Q 2	Calculate the eigen value of a function $\psi = 4e^{-6x}$ when the operator is $\frac{d^2}{dx^2}$.		CO3
Q 3	Write the Schrodinger equation of a hydrogen atom in polar and Cartesian co- ordinate.		CO1
Q 4	Which orbital has two radial and two angular nodes?		CO2
Q 5	 (i) Write the Schrodinger equation of a particle in three-dimensional box. (ii) What is the energy expression of a particle in a cubic box. 	4	CO3
	SECTION B (Attempt all Questions; internal choice is given for question number 9) (4Qx10M=	40 Marks)
Q 6	 (a) Assume hexatriene as particle in one dimensional box with L= 0.85 nm. What is the wavelength (nm) of light required for the transition from ground state to the first excited state? (b) A particle in 3D cubic box of length "a" has energy of ^{14h²}/_{8ma²}. What is the degeneracy of the state? 	6+4	CO2
Q 7	(a) What is the expression of rotation constant \mathbf{B} (cm ⁻¹) in terms of moment of	5+5	CO2

		inertia? If $B = 20 \text{ cm}^{-1}$, what are the energies of the rotational energy levels of the molecule with $J=0, 1, 2$ and 3?				
	(b) Write the Schrodinger equation of a simple harmonic oscillator. What is zero-point energy?				
Q 8	(a	 (a) The rotation of HF can be modelled as rigid rotor. The energy difference between the 4th and 5th rotational level is 200×10⁻²³ J. Calculate the energy of the rotational level with J=1. 		CO2		
	(t) Draw the radial probability density plot of 1s, 2s, and 2p orbitals.				
Q 9	(a)	The vibration of ³⁵ Cl ³⁵ Cl molecule can be considered as simple harmonic oscillation. The force constant is 240 Nm ⁻¹ . Calculate the fundamental vibration frequency and the zero-point energy of this molecule.				
		Calculate the average momentum of a particle in vibrational state "v" which is described by wave function " ψ_v ". Justify your answer.	5+5	CO3		
	(b)	Find the value of the commutator $[x, p_x]$ and $[p_x, T_x]$ where p_x , T_x are momentum and kinetic energy operators along the X direction. OR				
		What is Hermitian operator? Prove that the Hermitian operators always give real eigen value.				
		SECTION-C				
Q10		40 Marks	5)			
QIU	(a) Derive the expression of wave function and energy of a particle in three- dimensional box.					
	(8	(a) (i) Draw the wavefunction and energy levels of a simple harmonic oscillator.		CO4		
		(ii) The lowest energy of 1D SHO is 300 cm ⁻¹ , What is the energy of the next				
Q 11	(a					
	OR Given that a particle is restricted to the region –a <x<a a="" and="" has="" td="" wave<=""><td>CO4</td></x<a>			CO4		
	(t					

two lowest vibrational energy level is 3.313×10^{-20} J.		
$\begin{array}{ll} & & & & \\ $	ıs? Explain	