Name: Enrolment No:			
Course Progra +Elect Course Instruc	End Semester Examination, December 2023 Engineering Mathematics I m. Bech. [ASE+APE(UP)+ADE+Chemical+E\&CE+Civil+ Mechatronic Codes \& Communication] CATH 1050 ions: All questions are compulsory.	ester: Mech x. Mark	al hrs. 00
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Find the rank of matrix $A=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 2\end{array}\right]$	4	CO1
Q 2	Evaluate $\int_{0}^{\infty} x^{\frac{1}{4}} e^{-\sqrt{x}} d x$.	4	CO2
Q 3	If $u=x^{2}+y^{2}+z^{2}$, prove that $x u_{x}+y u_{y}+z u_{z}=2 u$.	4	CO2
Q 4	Find $\operatorname{curl}(\operatorname{curl} \vec{V})$ where $\vec{V}=2 x z^{2} \hat{\imath}-y z \hat{\jmath}+3 x z^{3} \hat{k}$ at (1, 1, 1).	4	$\mathrm{CO3}$
Q 5	Evaluate $\int_{C} \vec{F} \cdot \overrightarrow{d r}$, where $\vec{F}=x^{2} \hat{i}+x y \hat{j}$ and C is the boundary of the square in the plane $z=0$ and bounded by $x=0, y=0, x=1$ and $y=a$.	4	CO 3
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q 6	Let $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$. Find the modal matrix P such that $P^{-1} A P$ is a diagonal matrix.	10	CO1
Q 7	Evaluate $\iint_{R}(x+y) d y d x$, where R is the region bounded by the lines $x=0, x=2, y=x \& y=x+2$	10	$\mathrm{CO2}$
Q 8	If the vector $\vec{F}=\left(a x^{2} y+y z\right) \hat{\imath}+\left(x y^{2}-x z^{2}\right) \hat{\jmath}+\left(2 x y z-2 x^{2} y^{2}\right) \hat{k}$ is solenoidal, find the value of a. Also find the curl of this solenoidal vector.	10	CO 3

Q 9	Find the Fourier series representing $f(x)=x, 0<x<2 \pi$. OR Using Maclaurin's series, expand $\log (1+x)$. Hence, deduce that $\log \sqrt{\frac{1+x}{1-x}}=x+\frac{x^{3}}{3}+\frac{x^{5}}{3}+\cdots$	10	CO4
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10A	If $u=x+y+z, v=x^{2}+y^{2}+z^{2}, w=y z+z x+x y$, prove that $\operatorname{grad} u, \operatorname{grad} v$ and $\operatorname{grad} w$ are coplanar vectors. OR Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-$ 3 at the point $(2,-1,2)$.	10	CO 3
Q 10B	If a force $\vec{F}=2 x^{2} y \hat{\imath}+3 x y \hat{\jmath}$ displace a particle in the $x y$ plane from $(0,0)$ to $(1,4)$ along a curve $y=4 x^{2}$, find the work done. OR Apply the Green's theorem to evaluate $\oint_{C}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where C is the boundary of the region enclosed by x-axis and the upper half of the circle $x^{2}+y^{2}=a^{2}$	10	CO 3
Q 11	Find the Fourier series for $f(x)$, if $f(x)=\left\{\begin{array}{cc}-\pi, & -\pi<x<0 \\ x, & 0<x<\pi\end{array}\right.$. Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$.	20	CO4

