Name: Enrolment No:			
\left.UPES End Semester Examination, December 2023 $\right)$			
$\begin{gathered} \text { SECTION A } \\ (5 \mathrm{Qx} 4 \mathrm{M}=20 \mathrm{Marks}) \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q1	Express following points in Cartesian coordinates: a) $P\left(1,60^{\circ}, 2\right)$ b) $T(4, \pi / 2, \pi / 6)$	4	$\mathrm{CO1}$
Q2	Prove if the following first order differential equation is homogeneous or not: $x \sin \frac{y}{x} d y=\left(y \sin \frac{y}{x}-x\right) d x$	4	CO 2
Q3	Given a surface $\varphi(x, y, z)=2 x^{2}+x y-z=0$ Find the unit normal to this surface at $(1,-2,5)$.	4	$\mathrm{CO3}$
Q4	State Cayley-Hamilton theorem and briefly cite its importance in matrix algebra.	4	CO1
Q5	State Dirac Delta function and list its properties.	4	CO1
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q6	The radial displacement in a rotating disc at a distance r from the axis is given by $r^{2} \frac{d^{2} u}{d r^{2}}+r \frac{d u}{d r}-u+k r^{3}=0$ where k is a constant. Solve the equation under the following conditions: $u(r=0)=0 \& u(r=a)=0$	10	CO 2
Q7	(a) Given a function: $f(x, y, z)=e^{x y}+\log (\sin z x)-\frac{1}{y z}$ Find $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial x \partial y}, \frac{\partial^{2} f}{\partial y \partial z}$ (5 Marks) (b) Solve the following differential equation: (5 Marks) $\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0$	10	$\mathrm{CO3}$

Q8	A scope probe in the shape of ellipsoid $4 x^{2}+y^{2}+4 z^{2}=16$ enters the earth atmosphere and its surface begins to heat. After one hour, the temperature at any point (x, y, z) on the surface is $T(x, y, z)=8 x^{2}+$ $4 y z-16 z+400$. Find the hottest point on the probe surface. OR The pressure P at any point (x, y, z) in space is $P=400 x y z^{2}$. Find the highest pressure at the surface of a unit sphere $x^{2}+y^{2}+z^{2}=1$.	10	$\mathrm{CO3}$
Q9	(a) Diagonalize the following matrix: $A=\left(\begin{array}{ccc} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{array}\right)$ (b) Using Cayley-Hamilton theorem, find the inverse of the following matrix: (5 Marks) $A=\left(\begin{array}{ccc} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right)$	10	CO1
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 M=40 \text { Marks }) \end{gathered}$			
Q10	(a) Calculate the directional derivative of the function $\varphi(x, y, z)=$ $x y^{2}+y z^{3}$ at the point $(1,-1,1)$ in the direction parallel to the line $\frac{x-1}{2}=\frac{y-3}{-2}=\frac{z}{1}$. (8 Marks) (b) Find the constants a, b, c so that the vector field $\vec{F}=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{\jmath}+(4 x+c y+2 z) \hat{k}$ is irrotational. Find the scalar field such that $\vec{F}=\vec{\nabla} \varphi$ (12 Marks) OR (a) Find the directional derivative of $\vec{\nabla} \cdot \vec{v}$ at the point $(1,2,2)$ in the direction of the outer normal of the sphere $x^{2}+y^{2}+z^{2}=9$ for $\vec{v}=$ $x^{4} \hat{\imath}+y^{4} \hat{\jmath}+z^{4} \hat{k}$. (8 Marks) (b) A fluid motion is given by $\vec{V}=(y+z) \hat{\imath}+(z+x) \hat{\jmath}+(x+y) \hat{k}$ Show that the motion is irrotational and hence find the velocity potential. (12 Marks)	20	CO4
Q11	(a) Find the work done in moving a particle around the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1, z=0$ Under the field of the force given as $\vec{F}=(2 x-y+z) \hat{\imath}+\left(x+y-z^{2}\right) \hat{\jmath}+(3 x-2 y+4 z) \hat{k}$	20	CO 4

	Is this field conservative? \quad (8 Marks) (b) Evaluate $\iint \vec{A} \cdot \hat{n} d s$, where $\vec{A}=18 z \hat{\imath}-12 \hat{\jmath}+3 y \hat{k}$ and S is the part of the plane $2 x+3 y+6 z=12$ included in the first octant. (12 Marks)		

