

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
particle stops moving and the velocity of the second particle is \((10 \hat{\jmath}+5 \hat{k}) \mathrm{cm} / \mathrm{s}\). \\
Or \\
Calculate the reduced mass in case of hydrogen atom and positronium.
\end{tabular} \& \& \\
\hline \multicolumn{4}{|c|}{SECTION-C (Attempt all the questions. Question 11 has internal choice) (2Qx20M=40 Marks)} \\
\hline Q 10 \& \begin{tabular}{l}
(a) Deduce an expression for the gravitational field and potential at a point outside of thin uniform spherical shell. \\
(b) Explain multi-stage rocket? Discuss its motion when the rocket is moving in a free space field with no frictional forces present and also when it is moving in a region where gravitational forces are present.
\end{tabular} \& 10
10 \& CO2 \\
\hline Q 11 \& \begin{tabular}{l}
(a) Discuss the experiment of Michelson-Morley to show that the velocity of light is independent of the direction relative to all inertial frames of reference. \\
(b) Illustrate the damped harmonic oscillator. \\
Or \\
(a) A body moving with velocity \(v\) has a mass \(m\). Show that
\[
m=\frac{m_{0}}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}}
\] \\
Where \(m_{0}\) is the rest mass of the body and c , the speed of light. \\
(b) Illustrate the galvanometer with small damping.
\end{tabular} \& 15 \& \(\mathrm{CO3}\)

$\mathrm{CO4}$ \\
\hline
\end{tabular}

