Name:

Enrolment No:

	UPES			
Program: B.Sc. (H) Physics/Chemistry/Geology		Semester: I Time : 03 hrs. Max. Marks: 100		
Instruc	tions: Attempt all questions.			
SECTION A (5Qx4M=20Marks)				
S. No.		Marks	CO	
Q 1	Define Basis and dimension of vector space.	4	CO2	
Q 2	Explain direct sum of subspace.	4	CO2	
Q 3	Discuss linear combination of vectors and linear Span.	4	CO2	
Q 4	Describe linear transformation of vector space.	4	CO3	
Q 5	Explain range and null space of linear transformation.	4	CO3	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Prove that the intersection of two subspaces W_1 and W_2 of a vector space $V(F)$ is also a vector space of $V(F)$.	10	CO2	
Q 7	Show that the set of all positive rational numbers forms an abelian group under the composition $a * b = \frac{ab}{2}$.	10	CO2	
Q 8	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ then show that mapping defined by $T(\alpha, \beta) = (\alpha + \beta, \alpha - \beta, \beta)$ is a linear mapping.	10	CO3	
Q 9	Test for the consistency of the following system of equations and solve: 2x + 3y + 4z = 11, x + 5y + 7z = 15, 3x + 11y + 13z = 25		CO1	
	OR Find the modal matrix <i>P</i> which diagonalizes the matrix $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$, verify $P^{-1}AP = D$ where <i>D</i> is the diagonal matrix.	10		

	SECTION-C (2Qx20M=40 Marks)				
Q 10	Examine the following vectors for linear dependence and the relation if it exists. $X_1 = (1,0,2,1), X_2 = (3,1,2,1), X_3 = (4,6,2,-4), X_4 = (-6,0,-3,-4).$ OR Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ And verify Cayley Hamilton Theorem.	20	CO1		
Q 11	State Invertible linear transformation. Let U and V be vector spaces over the same field F and let T be the linear transformation from U into V then prove that T^{-1} is a linear transformation from V into U .	20	CO3		