Name: Enrolment No:			
UPES End Semester Examination, December 2023 Course: Linear Algebra (Minor) Semester: I Program: B.Sc. (H) Physics/Chemistry/Geology Time :03 hrs. Course Code: MATH1057 Max. Marks: 100 Instructions: Attempt all questions.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Define Basis and dimension of vector space.	4	CO2
Q 2	Explain direct sum of subspace.	4	CO2
Q 3	Discuss linear combination of vectors and linear Span.	4	CO2
Q 4	Describe linear transformation of vector space.	4	CO3
Q 5	Explain range and null space of linear transformation.	4	CO3
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Prove that the intersection of two subspaces W_{1} and W_{2} of a vector space $V(F)$ is also a vector space of $V(F)$.	10	CO2
Q 7	Show that the set of all positive rational numbers forms an abelian group under the composition $a * b=\frac{a b}{2}$.	10	CO2
Q 8	Let $T: R^{2} \rightarrow R^{3}$ then show that mapping defined by $T(\alpha, \beta)=(\alpha+$ $\beta, \alpha-\beta, \beta$) is a linear mapping.	10	CO3
Q 9	Test for the consistency of the following system of equations and solve: $2 x+3 y+4 z=11, x+5 y+7 z=15,3 x+11 y+13 z=25$ OR Find the modal matrix P which diagonalizes the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$, verify $P^{-1} A P=D$ where D is the diagonal matrix.	10	CO1

$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Examine the following vectors for linear dependence and the relation if it exists. $X_{1}=(1,0,2,1), X_{2}=(3,1,2,1), X_{3}=(4,6,2,-4), X_{4}=(-6,0,-3,-4)$ OR Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right]$ And verify Cayley Hamilton Theorem.	20	CO1
Q 11	State Invertible linear transformation. Let U and V be vector spaces over the same field F and let T be the linear transformation from U into V then prove that T^{-1} is a linear transformation from V into U.	20	CO 3

