N	•	m	Δ	
Τ.4	а	ш	C	•

Enrolment No:

UPES

Supplementary Examination, December 2023

Course : Mathematics Semester : I
Program : BCA Time : 3 Hrs
Course Code : MATH1037 Max. Marks : 100

Instructions: Answer all the questions

SECTION A

(Answer all the questions. Each question carries 4 marks)

Q1	Find the integral value of x , if $\begin{vmatrix} x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4 \end{vmatrix} = 28$.	4M	CO2
Q2	Determine the value of k for which the following function is continuous at $x = 3$. $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3 \\ k, & x = 3 \end{cases}$	4M	CO3
Q3	Define Chain rule and using it, evaluate $\frac{dy}{dx}$ if $y = \sqrt{3x^2 + 4x - 1}$.	4M	CO3
Q4	If the probabilities of solving a problem by two students A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively then what is the probability of the problem to be solved.		CO4
Q5	Solve the equation $3x^2 = 15 - 4x$ by completing the square method.	4M	CO1
	SECTION B (Answer all the questions. Each question carry 10 marks)		
Q6	The probabilities of <i>X</i> , <i>Y</i> and <i>Z</i> becoming managers are $\frac{4}{9}$, $\frac{2}{9}$, and $\frac{1}{3}$ respectively. The probability that the bonus scheme will be introduced if <i>X</i> , <i>Y</i> and <i>Z</i> becomes managers are $\frac{3}{10}$, $\frac{1}{2}$, and $\frac{4}{5}$ respectively. (i) What is the probability that bonus scheme will be introduced?		CO4
	(ii) If the bonus scheme has been introduced, what is the probability that the manager appointed was <i>X</i> ?		
Q7	If $A = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, prove that $A(adj A) = (adj A)A = A I_3$.		CO2
Q8	Evaluate $\int \frac{2x^2-9x-35}{(x+1)(x-2)(x+3)} dx$ using the technique of partial fractions.	10M	CO3

Q9	Determine the values of λ and μ such that the system $2x - 5y + 2z = 8$, $2x + 4y + 6z = 5$, $x + 2y + \lambda z = \mu$ has (i) no solution (ii) unique solution (iii) infinitely many solutions. Also, find the unique solution of the system. (OR) Solve the following homogeneous system for its non-trivial solutions (if any) $x + 3y + 2z = 0$, $2x - y + 3z = 0$, $3x - 5y + 4z = 0$, $x + 17y + 4z = 0$.	10M	CO2
	SECTION C (Answer all the questions. Each question carries 20 marks)		
Q10	 (i) Find the maximum and minimum values of the function f(x) = x³ - 6x² + 9x + 1. (ii) Use logarithmic differentiation to find dy/dx if f(x) = (5 - 3x²)⁷ √6x² + 8x - 12. OR (i) Evaluate ∫ e^{ax} sin bx dx using Integration by parts technique. (ii) Define Implicit function. Evaluate dy/dx at x = 3 if 2y³ + 4x² - y = x⁶. 	20M	CO3
Q11	a) Define the Rank of a matrix. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$ by reducing it into its normal form. [10 Marks] (b) Solve the following system of equations by Cramer's rule. $3x + y + z = 2$; $2x - 4y + 3z = -1$; $4x + y - 3z = -11$ [10 Marks]	20M	CO2