Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Supplementary Examination, Dec 2023

Course: Formal Languages & Automata Theory Semester: III Program: BCA (All Branches) Time : 03 hrs. Course Code: CSEG 2035P

Max. Marks: 100

Instructions:

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Define a finite automaton. Explain the components and working of a deterministic finite automaton (DFA).	4	CO1
Q 2	Explain the conversion of a nondeterministic finite automaton (NFA) to a deterministic finite automaton (DFA).	4	CO2
Q 3	Define context-free grammars and context-free languages.	4	CO1
Q 4	Discuss closure properties of regular languages.	4	CO2
Q 5	Give formal definition of a Push Down Automata (PDA).	4	CO3
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Explain the pumping lemma for context-free languages.	10	CO1
Q 7	Construct a NFA to accept strings of a's and b's having substring aba.	10	CO3
Q 8	Construct a DFA that recognizes the language of all strings over {0, 1} containing an even number of 1s.	10	CO2
Q 9	Convert the following context-free grammar to Chomsky Normal Form (CNF): $S \rightarrow aSb \mid \epsilon$	10	CO1
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Construct PDA accept the language $L=\{a^n b^n n \ge 0\}$. where each 'a' is followed by a 'b'. OR Prove that the languages accepted by pushdown automata are equivalent to the class of context-free languages.	20	CO3

Q 11	 a) Prove that the halting problem is undecidable. b) Design a Turing Machine to accept the strings having equal number of 0's and 1's. 	f		
	OR a) Provide a high-level description of a Turing machine that accepts the language $\{0^n \ 1^n n \ge 0\}$.	20	CO4	
	b) Compare the computational power of a pushdown automaton and a Turing machine. Discuss their similarities and differences.			