Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Supplementary Examination, December 2023

Course: Engineering Mathematics Program: B.Tech. SoCS (All Batches) Course Code: MATH 1052 Semester: I Time: 03 hrs. Max. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1) Mention Enrolment No. at the top of the question paper.
- 2) Attempt all the parts of a question at one place only.

## SECTION A (5Qx4M=20Marks)

|                                 | (SQX4M=20Marks)                                                                                                                                       |       |     |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|--|--|
| S. No.                          |                                                                                                                                                       | Marks | СО  |  |  |  |
| Q 1                             | Examine the following vectors for linear dependence and find the relation if it exists. $X_1 = (0, 0, 1, 1), X_2 = (1, 1, 0, 0), X_3 = (1, 1, 1, 1).$ | 4     | CO1 |  |  |  |
| Q 2                             | Find the $n^{th}$ derivative of $y = e^{3x}(x+2)^3$ .                                                                                                 | 4     | CO2 |  |  |  |
| Q 3                             | Solve $(D + 2)^2 y = (e^x x + cos x).$                                                                                                                | 4     | CO3 |  |  |  |
| Q 4                             | If $P(1) = P(5)$ in Poisson's distribution, then find the value of its mean.                                                                          | 4     | CO4 |  |  |  |
| Q 5                             | Obtain $\sqrt{12}$ , to five places of decimals by Newton Raphson method.                                                                             | 4     | CO5 |  |  |  |
| SECTION B<br>(4Qx10M= 40 Marks) |                                                                                                                                                       |       |     |  |  |  |

| (4Qx10M=40 Marks) |                                                                                                                                                                                                    |   |   |    |    |    |    |     |     |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|----|----|----|-----|-----|
| Q 6               | If $y = log(x + \sqrt{x^2 + 1})$ , prove that $(x^2 + 1)y_{n+2} + (2n + 1)xy_{n+1} + n^2y_n = 0$ .                                                                                                 |   |   |    |    |    | 10 | CO2 |     |
| Q 7               | Solve, by the method of variation of parameters, $\frac{d^2y}{dx^2} - y = e^x$ .                                                                                                                   |   |   |    |    |    | 10 | CO3 |     |
| Q 8               | In a certain distribution, the first four moments about a point are -1.5, 17,-<br>30 and 108. Calculate $\beta_1$ , $\beta_2$ and state whether the distribution is leptokurtic<br>or platykurtic. |   |   |    |    |    | 10 | CO4 |     |
|                   | The values of $x$ and $y$ are given as below:                                                                                                                                                      |   |   |    |    |    |    |     |     |
| Q9                | x                                                                                                                                                                                                  | 1 | 3 | 5  | 7  | 9  |    |     |     |
|                   | у                                                                                                                                                                                                  | 3 | 8 | 12 | 16 | 21 |    | 10  | CO5 |
|                   | Using Newton's forward interpolation formula, find y at $x = 2$ .                                                                                                                                  |   |   |    |    |    |    |     |     |

|      | OR                                                                                                                                                  |    |            |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|--|--|--|--|--|
|      | Evaluate $\int_0^1 \frac{dx}{(x+1)}$ by using Simpson's 1/3 and 3/8 rule (choose $h = 1/6$ ).<br>Hence obtain the approximate value of $\log_e 2$ . |    |            |  |  |  |  |  |
|      | SECTION-C<br>(2Qx20M=40 Marks)                                                                                                                      |    |            |  |  |  |  |  |
|      | <b>a</b> ) Change the order of integration and hence evaluate $\int_0^a \int_y^a \frac{x  dx  dy}{x^2 + y^2}$ .                                     |    |            |  |  |  |  |  |
|      | <b>b</b> ) Evaluate $\iint_R (6x^2 - 40y) dxdy$ , where <i>R</i> is the triangle with vertices (0, 3), (1, 1) and (5, 3).                           |    |            |  |  |  |  |  |
| Q 10 | OR                                                                                                                                                  | 20 | CO2        |  |  |  |  |  |
|      | a) Evaluate $\iint_R (4xy - 40y^3) dxdy$ , where <i>R</i> is the region bounded by $y = \sqrt{x}$ and $y = x^3$ .                                   |    |            |  |  |  |  |  |
|      | <b>b</b> ) Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz  dx  dy  dz.$                                                     |    |            |  |  |  |  |  |
| 0.11 | Use Runge – Kutta method of fourth order to find the numerical solution at $dy = 5x^2 - y$ is (2).                                                  | 20 | <b>CO7</b> |  |  |  |  |  |
| Q 11 | $x = 0.2$ for $\frac{dy}{dx} = \frac{5x^2 - y}{e^{x+y}}$ with $y(0) = 1$ . Assume step size $h = 0.1$ .                                             | 20 | CO5        |  |  |  |  |  |