Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Supplementary Examination, December 2023

Course: Engineering Mathematics Program: B.Tech. SoCS (All Batches) Course Code: MATH 1036 Semester: I Time: 03 hrs.

Max. Marks: 100

Instructions:Read all the below mentioned instructions carefully and follow them strictly:

- 1) Mention Enrolment No. at the top of the question paper.
- 2) Attempt all the parts of a question at one place only.

SECTION A (5Qx4M=20Marks)

	Marks	CO
Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and find its	4	CO1
inverse.	•	
Find the n^{th} derivative of $y = e^x(2x + 7)^3$.	4	CO2
Solve $(D-3)^2y = (e^{3x} + cosx)$.	4	CO3
If $P(1) = P(2)$ in Poisson's distribution, then find the value of its variance.	4	CO4
Obtain $\sqrt{12}$, to five places of decimals by Newton Raphson method.	4	CO5
	inverse. Find the n^{th} derivative of $y = e^x(2x + 7)^3$. Solve $(D-3)^2y = (e^{3x} + cosx)$. If $P(1) = P(2)$ in Poisson's distribution, then find the value of its variance.	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and find its inverse. Find the n^{th} derivative of $y = e^x(2x + 7)^3$. Solve $(D-3)^2y = (e^{3x} + cosx)$. If $P(1) = P(2)$ in Poisson's distribution, then find the value of its variance.

SECTION B (4Qx10M= 40 Marks)

							<u> </u>		
Q 6	If $y = \sin(m \sin^{-1} x)$, show that $(1 - x^2) y_{n+2} = (2n + 1)xy_{n+1} - (n^2 - m^2)y_n$.						10	CO2	
Q 7	Solve, by the method of variation of parameters, $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 20e^{-2x}$.						10	CO3	
Q 8	In a certain distribution, the first four moments about a point are -1.5, 17,-30 and 108. Calculate β_1 , β_2 and state whether the distribution is leptokurtic or platykurtic.						10	CO4	
	The values of x and y are given as below:								
Q9	X	1	5	9	13	17			
	у	2	11	15	20	26		10	CO5
	Using Newton's forward interpolation formula, find y at $x = 3$.								

	OR		
	Evaluate $\int_0^1 \frac{dx}{(x+1)}$ by using Simpson's 1/3 and trapezoidal rule (choose $h = 1/6$). Hence obtain the approximate value of $\log_e 2$.		
	SECTION-C (2Qx20M=40 Marks)		
	 a) Change the order of integration and hence evaluate \$\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dx dy\$. b) Find the volume of the solid that lies below the surface given by \$z = 16xy + 200\$ and lies above the region in the \$xy\$-plane bounded by \$y = x^2\$ and \$y = 8 - x^2\$. 		
Q 10	 a) Evaluate ∫∫_R (4xy - 40y³) dxdy, where R is the region bounded by y = √x and y = x³. b) Find the volume of the solid enclosed by the planes 4x + 2y + z = 10, y = 3x, z = 0, x = 0. 	20	CO2
Q 11	Use Runge – Kutta method of fourth order to find the numerical solution at $x = 0.2$ for $\frac{dy}{dx} = (x + y) \sin xy$ with $y(0) = 5$. Assume step size $h = 0.1$.	20	CO5