Name: Enrolment No:			
Course: GPU Programming Semester: VII Program: B.Tech CSE GG Time: 03 hrs. Course Code: CSGG4009 Max. Marks: 100 Instructions: Please follow the guidelines written in the cover page of your answer-sheet.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Write scenarios where __device__ must be used before the function signature.	4	CO4
Q 2	Explain the term "Querying Device Properties" with example CUDA code.	4	CO 2
Q 3	Define the relationship between warps, blocks and SMs.	4	CO2
Q 4	Describe why it is generally not a good idea to put _syncthreads inside a loop.	4	CO 2
Q 5	Explain the term Computational intensity operations and its relevance in GPU programming.	4	CO1
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	Write down the OpenCL code to check whether an array of numbers are even or odd parallelly. The result should be returned in a vector of 1 and 0 where 1 represents odd and 0 represent even. OR Given two Array A and B of size N, write a CUDA GPU program to populate the Array C of size N such that: $\mathrm{C}[\mathrm{i}]=\max (\mathrm{A}[\mathrm{i}], \mathrm{B}[\mathrm{~N}-\mathrm{i}-1])$ Where N is an even number	10	CO3

Q 7	Describe the functionality of cudaMalloc, cudaFree and cudaMemcopy with an example.	$\mathbf{1 0}$	$\mathbf{C O 2}$				
Q 8	Differentiate between Task Parallelism vs Data Parallelism.	$\mathbf{1 0}$	$\mathbf{C O 1}$				
Q 9	Create a table to show the mapping of terminologies between CUDA and OpenCL Programming.	$\mathbf{1 0}$	$\mathbf{C O 1}$				
SECTION-C (2Qx20M=40 Marks)						$\mathbf{2 0}$	$\mathbf{C O 3}$
Q 10	Elaborate the data parallelism concepts in OpenCL \& OpenACC and compare OpenACC \& CUDA Explore the contents of Data parallel Execution Model and CUDA Memories	$\mathbf{2 0}$	$\mathbf{C O 4}$				
Q 11	Write a CUDA based program to add two integer Matrices.						

