Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Compiler Design

Program: B.Tech (CSE) All Specialization

Course Code: CSEG 3015

Semester: V

Time : 03 hrs.

Max. Marks: 100

Instructions: Attempt all questions, however internal choice is mentioned.

SECTION A (5Qx4M=20Marks)

	DECTION II (CQAIM 2011MINS)		
S. No.		Marks	CO
Q 1	Consider the following C program and find out the number of tokens using lexical analyzer of compiler. main () { int *a, b; b = 10; a = &b printf("%d%d", b, *a); b = */*pointer*/b; }	4	CO1
Q2	Consider the regular language $L = (111+11111)^*$, where $\Sigma \in \{1\}$, Construct the DFA and find out the minimum number state for this language.	4	CO2
Q3	Consider the translation scheme shown below: S→T R R→+T {print ('+');} R € T→ num {print (num.val);} Here num is a token that represents an integer and num.val represents the corresponding integer value. For an input string '9+5+2', what this translation scheme prints?	4	CO4
Q4	Comprehend the comparison between synthesized attributes and inherited attributes with example.	4	CO4
Q5	State the definition of Context Free Grammar. Also, list the differences between all the types of grammars with example.	4	CO1
	SECTION B (4Qx10M= 40 Marks)		
Q6	Generate three address code for the following codewhile (A < C and B > D) do if $A = 1$ then $C = C + 1$ else while $A <= D$ do $A = A + B$	10	CO4

Q7	Consider the following grammar:-		
	$E \rightarrow E + T / T$		
	$T \rightarrow T * F / F$	10	COA
	$F \rightarrow (E) / id$	10	CO2
	Construct the first and follow sets for the grammar. Also design a LL(1) parsing		
	table for the grammar.		
00			
Q8	Code optimization is an important phase of compiler. Explain all the type of code	10	CO5
	optimization with proper example.		
Q9	Write the rule to non-determinism in a grammar. Do left factoring (if present)		
	in the following grammar:		
	$S \rightarrow bSSaaS / bSSaSb / bSb / a$		
	OR—	4.0	666
	Consider the following grammar-	10	CO3
	$E \rightarrow EAE \mid id$		
	· ·		
	$\begin{vmatrix} A \rightarrow + \mid x \\ C \rightarrow + \mid x \end{vmatrix}$		
	Construct the operator precedence parser and parse the string $id + id x id$.		
	SECTION-C (2Qx20M=40 Marks)		
Q10	Consider the following grammar:		
	$S \rightarrow Aa / bAc / Bc / bBa$		
	$A \rightarrow d$	• •	~~.
	B→ d	20	CO4
	Conduct the CLR and LALR parsing for the given grammar to obtain the parsing		
	tables, if possible. Otherwise, specify the problem with justification.		
Q11			
QII	Consider the following basic block-		
	B10:		
	$S1 = 4 \times I$		
	S2 = addr(A) - 4		
	S3 = S2[S1]		
	$S4 = 4 \times I$		
	S5 = addr(B) - 4		
	S6 = S5[S4]		
	$S7 = S3 \times S6$		
	S8 = PROD + S7		
	PROD = S8		CO5/
	S9 = I + 1	20	
	I = S9		CO3
	If I <= 20 goto L10		
	Draw a directed acyclic graph and identify local common sub-expressions.		
	After eliminating the common sub-expressions, re-write the basic block.		
	-		
	OR		
	Define the following terms with example:		
	i. Lex Program with example		
	ii. Activation record		
	iii. Parse Tree vs Syntax Tree with example		
	iv. Peep-hole Optimization		
1			